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Abstract. Let A" be the n-dimensional affine space over R and A (n) its groups
of motions. Themap \:A (n) - GLn(R) associates to an affine motion its linear
part. In the first part of the paper we prove that any subgroup I' < A (n) which
acts discontinuously with compact quotient on A" and which has the property
that N(I") is contained in a Lie group of rank < 1 is polycyclic by finite. The second
part of the paper classifies such groups which satisfy NI) < O(n - 1, 1) up to
commensurability.

1. INTRODUCTION

Let V be a real vectorspace of finite dimension n. We write a(V) for the
affine space associated to V and Aff{(V) for the group of affine motions on
a(V). Choosing a basis in V we may make the following identifications:
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ot
a(R™) = (1 )]vElR"

Aff (R*) =

g w!
(0 1)|g€GLn(]R),w€1R"

The action of Aff(IR”) on a(IR™) is then given by the usual matrix product.
A" stands for the transpose of a matrix 4. A subgroup I < Aff(V) is said
to act discontinuously on a(V) if for every compact set K <a(V) the set

YET|¥K N K+#0}

is finite. A group which acts discontinuously is discrete in Aff(}), but the
converse does not hold in general.
The group TI' << Aff(V) is said to act quasitransitively on a(V), if there
is a compact set K <a(}')so that
a(N)= U v-K
YET
The simplest examples of groups that act discontinuously and quasitransi-
tively on a (V) are

;((1) U:)|ueg

where §2 < IR" is a full lattice. It is easy to see that a group I' << Aff(}) that
acts discontinuously and quasitransitively on a(V) is finitely generated. The
following is a long standing problem:

CONJECTURE 1.1. Let V be a finite dimensional real vectorspace and I' < Aff (V)
a subgroup which acts discontinuously and quasitransitively on a(V). Then
T is virtually polycyclic.

If @ is a property of groups, then the group G is called virtually 2 if
G has a subgroup of finite index satisfying & . A group G is called polycyclic
if it has a series of subgroups:

(V=G6,96,<4...<6, =G

1 n
so that G,/ G, iscyclicforall 0<i<n-1.

Originally conjecture 1.1 was posed even without the assumption that T’
acts quasitransitively [18]. In [17] the second author gave a counterexample
to this stronger conjecture. Conjecture 1.1 has been solved affirmatively in case
the dimension of V is1,2,3,[9].
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Let T’ < Aff(V) be a subgroup that acts discontinuously, quasitransitively
and without fixed points on a(V). The latter means YP =P for Yy €I and
Pea(V) implies v = 1. In this case the set of orbits

r'\a(»

inherits from a(V) the structure of a complete, affinely flat compact mani-
fold. It is easy to see that every such manifold arises as such a quotient. By
a theorem of Selberg every finitely generated linear group contains a torsionfree
subgroup of finite index. It follows that conjecture 1.1 can be given the equi-
valent form:

CONJECTURE 1.1': Let M be a complete, affinely flat compact manifold. Then
its fundamental group ., (M) is virtually polycyclic.

Given a finite dimensional vectorspace V we denote by

A AT (V) ~ GL(V)

the canonical homomorphism which assign to an affine motion its linear part.
The kernel of X consists of the pure translations. In coordinates A is given
by:

g w
A .
(o 1)”’

For a subgroup T' < Aff (V) we introduce its group of translations:

1 wt 1
IWEV er).
0 1 0 1

DEFINITION 1.2. let V be a finite dimensional real vectorspace and G < GL(V)
a closed subgroup with finitely many connected components. A group
I' < Aff (V) is called Glinear if NI) <G.

T.=Tn

r Vp =

r vEV[

The following are important special cases of the above concept. Let V have
dimension n, take a basis, and write 0(n), for the orthogonal group of the
quadratic form

2 2
x4+ x2

on the chosen basis. The G =O(n)linear groups are the groups of euclidean
motions. The orthogonal group of the quadratic form
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2 2

X, +xy+.o0 +Fx,

which is of signature (n, 1) is denoted byO (n, 1). The G=O0 (n, 1)-linear
groups are the groups of Lorentz-motions.

Let G < GL(V) be a closed subgroup. The real rank of G is denoted by

rklRG,

This is the maximal dimension of a subgroup of G isomorphic to an IR-
split torus, that is (R*)?. See Helgason [14] for the details in the theory of
Lie groups. We prove here:

THEOREM 1.3. Let V be a finite dimensional real vectorspace. Let G < GL(V)
be a closed subgroup with finitely many connected components which is reduc-
tive and satisfies rk]RG < 1. Then any G-linear subgroup T < Aff (V) which
acts discontinuously and quasitransitively on a (V) is virtually polycyclic. n

Theorem 1.3 has two predecessors. If G = K < GL(V) is compact, that is
rkr G = 0 then a Ginear group is conjugate to an 0(n)-linear group. The theo-
rem of Bieberbach [4] may be applied and proves that I is even virtually abelian.

If T is a group of Lorentz-motions, that is M(I") <O(n, 1), (n + 1 = dimg V),
then Goldman and Kamishima [11] have proved the above result. Our proof
is similar to that of Goldman and Kamishima. We use induction on the dimension
of V. We distinguish the cases that A(I") is discrete or not. In the first instance
we use the same cohomological argument as [11]. In the second case our argu-
ment differs from that in [11]. We use a general description of the closed sub-
groups of the reductive groups of real rank 1. '

We mention that a reductive real group of rank 1 is isogenous to one of the

following types.

DR* x X, K compact
2)0(m, 1) x K, K compact, m>1
3)Um, 1) x K, K compact, m>=1
4)Sp(m, 1) x K, K compact, m>1
SFJIIxK, K compact.

We use here the terminology of Helgason [14]. The simbol x stands for almost
direct product. If the group G mentioned in Theorem 1.3 is even semisimple
then it is Zariski-closed. If not G isisogenous to IR* x K where K is compact.
In the latter case proposition 2.3 implies the statement of Theorem 1.3. Hence
we can, without loss of generality, assume that G is an algebraic subgroup
of GL(V).

We proceed by investigating the following a bit vaguely stated problem.
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PROBLEM 1.4. What can one say about the isomorphism and conjugacy classes
of virtually polycyclic groups that act discontinuously and quasitransitively
on affine spaces?

The following is easily, deduced from theorem 1.3. It shows that the structure
of the virtually polycyclic groups arising in theorem 1.3 is quite restricted.

COROLLARY 1.5. Let V be a finite dimensional real vector space. Let
G < GL(V) be a closed subgroup with finitely many connected components
which is reductive and satisfies rkg G<1 Then any G-linear subgroup
' < Aff(V) which acts discontinuously and quasitransitively on a(V) has
a series of subgroups

(H)Qr, < r,<T,dr,4dr, =T

with

(i) T, is abelian,

(ii) T[T, is nilpotent of class < 2,

(iii) l"2/1"1 is abelian,

(iv) 1‘3/I‘2 is abelian,

(v) T,[T, is finite. =

Note that any subgroup of a virtually polycyclic group is finitely generated,
so that we have a little more information about the subquotients occurring
in Corollary 1.5.

The main tool in the finer investigation of problem 1.4 is a theorem proved
by Fried and Goldman [9].

THEOREM 1.6. Let V be a finite dimensional real vectorspace and G < GL(V)
a Zariski closed subgroup. Let T' < Aff(V) be a G-linear virtually polycyclic
group that acts discontinuously and quasitransitively on a(V). Then there is
a subgroup H < Aff(V)which is G-linear with:

(i) Hacts simply transitively ona(V),

(ii) H NOT has finite index in T,

(iii) HNT isalatticein H,i.e. H N T is discrete and cocompact in H. .

Theorem 1.6.splits Problem 1.4 virtually into two separate questions.

PROBLEM 1.4’ Let V be a finite dimensional vectorspace G < GL(V) a closed
subgroup with finitely many connected components



498 FRITZ GRUNEWALD, GREGORI MARGULIS

(i) Classify the subgroups H < Aff(V) which are G-linear and act simply
transitively on a( V).
(ii) For each group which occurs in (i) classify the lattices in H.

Both parts are usually very difficult. A guiding line is given by the Bieberbach
theorems (G = orthogonal group). Of course any group H < Aff (V) that acts
simply transitively on a (V) is a connected, simply connected Lie-subgroup of
Aff1V). Auslander [1] has furthermore shown that H must be soluble. At the
moment there is no soluble connected simply connected group which is known
not to act simply transitively on some affine space. The first part of Problem
1.4' can be put in stages of increasing difficulty. One might ask for a classifica-
tion of the groups up to isomorphism or up to conjugacy in Aff(V).

Sections 3, 4, 5, 6 of our paper contain a treatment of Problem 1.4’ in case
of Lorentz-motions that is G =O0(n, 1). Our classifications contain the results
of Auslander and Markus [3] (n = 3) and Fried [10] (n = 4) as special cases.

We shall describe our results now in more detail, For this let W = R" 1 pe
an (n — 1)-dimensional vectorspace with basis. On the vectorspace of dimension
n+2

RxWxIR

We consider the quadratic form

g(x, v, y) =2xy + vt

of signature (», 1). The group:

E(n,1)=

g w!
(O : )lgEO(q,IR),WGIRxWxIR
is called the group of affine Lorentz-motions. O(g, IR) is the real orthogonal
group of the quadratic form g.

First of all we describe our classification of the isomorphism types of unipotent
subgroups U < E(n, 1) which act simply transitively on affine space. Tor each
dimension these groups fall into finitely many isomorphism types. We shall
give presentations for the Lie algebras of the possible U.

DEFINITION 1.7. let n > 1,0<k<(n—1)/2 i=1,2 Dbeintegers. Let¥”
be a real vectorspace of dimension # + 1 with basis
(N Y I A ST P

On ¥ we define the structure of Lie algebras & i(n + 1, k) by the multipli-
cation tables in table 1. 2°1(n + 1, k) is defined for any
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n—1 n-1

0<k< , X% —1,k) for k+ -

We write Li(n + 1, k) for the connected, simply connected Lie group with Lie
algebra Z'(n + 1.k

The Lie algebras Z(n + 1, k) are all nilpotent of nilpotency class < 3.
They are mutually nonisomorphic.

THEOREM 1.8. Let n > 1 be an integer and H a connected, simply connected
nilpotent Lie-group of dimension n + 1 Then the following two statements
are equivalent

(i) There is a subgroup U < E(n, 1) which acts simply transitively on affine
space and is isomorphic to H,

(ii) H is isomorphic to one of the L(n + 1, k).

This result is proved in section 3. We also give a set of representatives for the
E(n, 1) conjugacy classes of the simply transitive unipotent subgroups H<E(n,1).

The case of a general group H < E(n, 1) acting simply transitively is treated
in section 4. Such a group is necessarily connected, simply connected and soluble.
In section 4 we give a detailed description of these groups which implies the
following result.

THEOREM 1.9. Let n > 1 be an integer and H < E(n, 1) asubgroup that acts
simply transitively on affine space. Then H is of one of the following types

(i) H is unipotent,

(ii) H Is a split extension R® x R? wherea+b=n+ 1and R® acts ortho-
gondally on R?,

(iii) H is a split extension R® x R® where a + b=n+1 and a> 2, and
RY acts through a homomorphism

R® » R* x O(a—2) > GL_(R)

on IR?, where R* acts trivially up to one dimensional eigenspaces for the iden-
tical character and its inverse,
(iv) H is a sequence of split extensions

H=(H xH))xH,.
H = R’ H, = IR?, Hy =R and a+ b+ 1=n+1.HereH, isnormalin H

and H acts orthogonally on Hl. The group H, acts trivially on the quotient
(H, » H2)/H1,
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(v) H is a sequence of split extensions

H=((H1 tz)xH3)xH4,

Hl = R, H2 is an unipotent group with at most one dimensional commultator
subgroup and of dimension b, H; = R°, H, = Randa+b+c+1=n+1
Here H, and H1 X H2 are normal in H and H acts orthogonally on H1
and H,. H3 also normalizes H, and H 4 acts trivially on

((Hl x H,) » H3)/Hl xH,.

In fact it is clear from section 5 that every group of type (ii), (iii), (iv) can be
embedded into E(n, 1) as a simply transitive group of affine motions. The
type (v) has to be further restricted so that this is possible. We shall not discuss
this here.

Next we want to explain our results on groups I' <FE(n, 1) that act disconti-
nuously and quasitransitively on affine space. Our aim is to describe up to finite
index the isomorphism types of these groups. Remember that one of the Bie-
berbach theorems says that a quasitransitive and discontinuous group of euclidean
motions on IRR" contains a normal subgroup of finite index which is isomorphic
to Z".

THEOREM 1.10. Let n > 1 be an integer, and T < E(n, 1) a subgroup that
acts discontinuously and quasitransitively on affine space. Then falls into one
of the following two types:

(i) T is virtually nilpotent,

(ii) T is virtually (abelian by cyclic).

Let 2,, &, be two properties of groups. A group G is called Z, by
?l if G. contains a normal subgroup H with property 9’0 so that the quo-
tient G/H has property 9’1.

Theorem 1.10 can be considerably sharpened. The groups arising under (i)
and (ii) can be further restricted. We first of all discuss the virtually nilpotent

cases.

THEOREM 1.11. Let n > 1 be an integer,and T < E(n, 1) a virtually nilpotent
subgroup that acts discontinuously and quasitransitively on affine space. Then
I' contains a subgroup T, of finite index with the following properties:

(i) T, is nilpotent of nilpotency class <3

(ii) T', contains a normal subgroup I', which has cyclic or trivial commutator
subgroup and so that ', [Ty =~Z.

It is a simple matter to classify finitely generated nilpotent groups with cyclic
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commutator subgroups [13]. It so happens that not every cyclic extension of
these groups occurs as a group I' < E(n, 1) that acts discontinuously and quasi-
transitively on affine space. To clarify this point we introduce the following
notion.

DEFINITION 1.12. Let Ty, I‘l be groups. They are said to be abstractly commen-
surable if there are subgroups 6, <T', and 6, < r, with:

(i) the indices | T, : 0, | are finite,

(i) 6,and 6, are isomorphic.

For example I'; and I’1 might lie in a common overgroup and intersect
in a subgroup of finite index in both.

Let Ty, T, be two finitely generated torsionfree nilpotent groups. We write
Mg (T',) for their rational Malcev-completions. The MQ (I';) are Q points of
unipotent algebraic groups defined over Q. FO, Fl are abstractly commen-
surable if and only if MQ(I“O) and MQ (I‘l) are isomorphic as Q-groups. This
is the case if and only if their Lie algebras are isomorphic. For all of this see
[13].

Let H Dbe a connected, simply connected nilpotent Lie group. Then it is in
general quite difficult to classify the abstract commensurability classes of lattices
(i.e. cocompact discrete subgroups) in H. If H has a lattice then the Lie algebra
S of H is defined over Q. It can be proved [13] that the abstract commen-
surability classes of lattices in H correspond to the elements of the trivial fibre
of the natural map of Galoiscohomology-groups

HY(Q, Auty ()~ H' (R, Auty GF)).

where  Autg, (5¢) is the automorphism group of # considered as an algebraic
Q-group.

We are here able to classify the abstract commensurability classes of the groups
arising in Theorem 1.11 by equivalence classes of quadratic forms.

To do this we introduce the following groups.

DEFINITION 1.13. Let n, k be integers so that 0 <k < (n — 1)/2. For
m=(m1,...,mk)e(2-lN)kwedefine Vm = (\/Zl,...,\/ﬁk) and
L(Vm)={(x, Vm,,...,x,Vm)| x,,...,x, €Z}.
We also define the positive definite quadratic forms
9., =m1J/f +...+mkyZ.

We furthermore put
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F‘(n+ 1,k m)=

1
1 0 0 —x ——xx!
2
0 F 0 0 0 z*
0 0 E o 0 xt
=ﬁ t |r.s€Z;x,y eL(Vm); }
0 0 0 E x y segn-1-2k
0 0 O 0 1 N
0 0 O 0 0 1
n-1
If k< we write el=(1,0,....O)EZ"_l_2k and put
T,(n+1,k m)=
1 —2s¢, 0 —x ——(4st+xx") r
2
0 E 0 o0 2se1’ i
0 0O E 0 0 x!
=9 |r,s€Z;x,yEL(\/m);
0 0 0 E x! y sezh~1-2% (
0 0 0 0 1 s
0 0 0 0 0 1

The symbol E stands for the unit matrix of the appropriate dimension. The
sets Fi(n + 1, k, m) are finitely generated torsionfree nilpotent groups that
act discontinuously and quasitransitively on affine space. The groups I'.(n + 1,
k. m) are all extensions where H, is the discrete Heisenoerg group of rank 2k + 1.

The groups I'; (n + 1, k, m) and ', (n' + 1, k', m") are abstractly isomorphic
if and only if i =j, n = n', k = k' and if the quadratic forms q, and q, . are
up to sign integrally equivalent.

THEOREM 1.14. Let n > 1 be an integer

(i) Let T < E(n, 1) be a virtually nilpotent group that acts discontinuously
and quasitransitively on affine space then T is abstractly commensurable to
one of the groups Fi(n +1,k m).

(ii) The groups Ty(n + 1, k, m) and Fj(n' + 1, k', m) are abstractly commen-
surable if and only if the following hold i =j n=n', k = k', and there is an
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o € Q* 5o that the quadratic forms q,, and o - q, are equivalent over Q.

The equivalent classes of nondegenerate quadratic forms over Q can be
described by the Hasse-Minkowski theorem. The invariants of an equivalence
are: dimension, determinant and the vector of Hasse symbols [8]. In Theorem
1.14 a slightly stronger equivalence relation amongst quadratic forms arises.
We have described in Proposition 6.13 the modifications which have to be made
to affine invariants for this relation.

We shall now give a description of the virtually abelian by cyclic groups which
arise in Theorem 1.10, (ii).

DEFINITION 1.15. Let n>1 be an integer and A € GLn(Z) an invertible matrix.
Let the cyclic group Z act on Z" by

1-v=4-v",
We write
n+1,4) =2Z"x ,Z.

let n> 3. We call a matrix A € GLn(Z) of Lorentz type if it is diagonali-
zable and its eigenvalues are

LAY g a

PRI M
where A is positive real and all a; satisfy ]a'.] =1.

Nonunipotent matrices A € SL,(Z) with positive eigenvalues are of Lorentz
type. Any matrix A € GL,(Z) with characteristic polynomial (x —1) (x*-
—4x3 4 4x? — 4x + 1) is of Lorentz type.

We have the following obvious result describing the classification of the
'n+1,4).

PROPOSITION 1.16. Let n>1 be an integerand A, A’ € GLn (Z).Then:
(i) T(n +1,4A) =Tn+ 1,AVY= A4 is GL,(Z) conjugate to Aora1,
(ii) T(n + 1, A) is commensurable withT(n + 1, A") = A" is GL, (Q) conjuga-
teto A" for somer, s € Z \ {0}.

THEOREM 1.17. Let n=1 be an integer. Then the following hold

(i) If T <E(n, 1) isasubgroup that acts discontinuously and quasitransitively
on affine space and T is not nilpotent by finite then T" contains a subgroup
r, of finite index so that I"0 is isomorphic to a group T'(n + 1, A) where
A€ GLn(Z) is of Lorentz type

-(ii) Every T(n + 1, 4), where A is of Lorentz type can be embedded into
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E(n, 1) as a discontinuous quasitransitive group of affine transformations.

Proposition 1.12 and Theorem 1.13 give a description of the abstract commen-
surability classes of groups I' << E(n, 1) which act discontinuously and quasi-
transitively on affine space and that are abelian by cyclic, relative to the GLn Q)
conjugacy classes of certain matrices in GLn(Z).

The groups I"i(n + 1,k m) and I'(n + 1, A) are all torsionfree, so they are
all fundamental groups of » + l-dimensional complete compact affine Lorentz-
manifolds (space-times). Our results imply that every fundamental group of a
manifold of this type is abstractly commensurable with some I‘i(n + 1, k, m)
or 'n+ 1, A4).

The Bieberbach theorems say that in each dimension there are only finitely
many isomorphism types of discontinuous, quasitransitive groups of euclidean
affine motions and they are all abstractly commensurable. In addition to the
above classification of the abstract commensurability classes of discontinuous,
quasitransitive groups of Lorentz affine motions we can add the following result
on the possible isomorphism types.

THEOREM 1.18. Let n > 1 be an integer, H < E(n, 1) be aunipotentsubgroup
that acts simply transitively on affine svace. Fixa subgroup " < H that acts disconti-

nuously and quasitransitively. Then the following set of groups which act discon-
tinuously and quasitransitively

{A<E(n, 1| () ANH=T, (ii) |2 : I'|<eo)

falls into finitely many isomorphism classes.

Theorem 1.18 is proved in [12]. The proof used methods from [23].
We thank Dan Segal for many helpful discussions.

2. GROUPS ACTING DISCONTINUOUSLY AND QUASITRANSITIVELY
ON AFFINE SPACE

In this section we shall give a proof of Theorem 1.3. We start off by establish-
ing some technical results. Qur proof will work by induction on the dimension
of V. First of all we describe a device to divide out subspaces from V.

If the group H actson theset S and S’ C S isa subset we write

Stab, (S)={h € H| hS'C S’}

for the stabilizer of S’ in H. Suppose now that V is a finite dimensional
real vectorspace and V) <V a subspace. By ry ~we denote the natural
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homomorphism

r., :Stab

v, (Vo) = GL(V/ V).

GL(V

We also have the homomorphism

Py, N X(Stabg, () (Vo) = ATE(V/V,)

g w! V0+z’ V0+gz’ + w!
wnlo o)1)=
0 1 1 1

The kernel of P, clearly is

ker p,, = Stab y @V N NA™ ! (kerry, ).

Aff(V

LEMMA 2.1. Let V be a finite dimensional real vectorspace, I' < Aff (V)
a subgroup that acts discontinuously and quasitransitively on a(V). Assume
that Vi, <V isa subspace with

(i) NT)<Stabg, ,,, V),

(ii) ker Py, NT acts quasztransztzvely on a(V ).

Then Py, (l") acts discontinuously and quasztransztzvely on a(V/ V ).

Proof: Clearly pV (I") acts quasitransitively ona (V /V )

Let K be a compact set in a(V /V ). Choose a compact set K'< a(V) so
that the image of K' in a(V/V ) is K and so that the translates of K N a(VQ)
under ker Py, N T exhaust a (Vo)' Every coset 0 € Py (I with KNOK+¢
has then an element v €6 with vK' N K' # ¢. Hence Py, (I') acts disconti-
nuously. n

The obvious spaces V, to which Lemma 2.1 can be applied are the spaces
generated by the translations in I':

1 wt
wEV] (0
1

R- )EF.

Returning to the situation described in Theorem 1.3 we have fixed a type
of G<GL(V) and we are considering G-linear groups I' < Aff (V). Let
V0 < V be a subspace with

M) < Stabg ; (Vo)

For inductive purposes it is then necessary to describe some properties of the
group

Stab, (V) <G
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Or rather its image in GL(V/ Vo)' For this we need a theorem of Morozov
and Platonov [20, 21). See also [6].

PROPOSITION 2.2. Let G be a linear algebraic reductive group over R. Let
H < G be a Zariski closed subgroup Assume that the unipotent radical of H
is nontrivial Then the normalizer Ng (H) of H in G is contained in a (proper)
parabolic subgroup of G

The following is an obvious consequence of the above result.

COROLLARY 2.3. Let G be a linear reductive algebraic group over R with
rkp G < 1. If H isa Zariski closed subgroup then only the following two
cases are possible.

(i) The connected component of H is reductive, with rky H< 1.

(ii) N (H) is a subgroup of a group P which is isomorphic to a semidirect
product P= S x K where S is soluble and K is compact,

Proof: The parabolic subgroups of G are of the type mentioned in (ii). ]

The following proves for some groups G that a G-inear group is virtually
polycyclic. The result is contained in Raghunathan [22].

LEMMA 2.4. Let H be a connected Lie-group which is a semidirect product
H=8SxK
of a compact group K over a soluble normal group S. Then any discrete sub-

group of H isvirtually polycyclic.

Another result needed is the following special case of a theorem by Auslander

[2).

PROPOSITION 2.5. Let V be a finite dimensional vectorspace. I' < Aff(V)
a discrete subgroup. Then
AT)°

is soluble.

Here H° stands for the connected component of the topological closure
of the subgroup H < GL(V). If G is a linear semisimple Lie-group with finitely
many connected components and so that rkg G = 1, we put
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_ 0
X, = G'/K,

where K < G° is a maximal compact subgroup. X is called the symmetric
space attached to G. It is homeomorphic to R? for some d. For the almost
IR-simple real groups we list the dimensions of X G from [14]:

G dim X
O(n, 1) n
Un, 1) 2n
Sp(n, 1) 4n
F, 11 16

We prove:

PROPOSITION 2.6. Let G be a semisimple real Liegroup with finitely many
connected components and of real rank 1. Assume further that G is not iso-
genous to an almost direct product K xO(2,1) where K is compact. Let

p:G>GL(V)

be a faithful representation (i.e. ker p = 1). Then
dim ¥V > dim X G-

Proof. G is an almost direct product G = K x H, where H is almost R-simple
with rkm (H) =1 and K is compact. p defines a faithful representation of
H and hence a nontrivial representation of the complexification '#a of the
Lie algebra of H. Note that }fc is simple except for H isogenous to O3, 1),
in this case Jf’c = 51,(0) ® s12(¢). From the tables in [25} we see which irredu-
cible representations of ¢ are real. On the other hand we get from Weyls
dimension formula {15] a lower bound for the minimal dimension of an irre-
ducible representation of ¢ The combination gives the following table of
minimal dimensions of irréducible nontrivial modules V for the various groups
H.

H isogenous to dim V >

O, D n+1 for n#2
Un, 1) 2n + 2
Sp(n, 1) 4n + 4

F,11 26
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Note that Spin(2, 1) has a two-dimensional representation via the excep-
tional isomorphism

Spin(2, l)—:—SLz(IR) "

Proof of the Theorem 1.3. As mentioned before we proceed by induction on
the dimension of V. The result is known in dimensions 1, 2, 3. See [9]. In fact
in dimensions 1 and 2 our claim is more or less obvious.

ILet now V be an n 2 3 dimensional vectorspace and I' < Aff(V) a sub-
group that acts discontinuously and quasitransitively on a(V). If the group
of translations Tr is nontrivial then we use Lemma 2.1, Coroliary 2.3, Lemma
2.4 and the induction hypothesis to finish. We assume now that T, = (1).
We now distinguish two cases:

1) N) is discrete in G.

Since T' is a finitely generated linear group, we may replace I' by a torsion-
free subgroup of finite index (Selbergs theorem [22]). Then I' acts without
fixed points on a(F). We may by going to a subgroup of finite index insure
that I" acts orientation preservingly. It follows that

r¥ o)
18 a compact orientable manifold of dimension » = dim V. By Poincare-duality
we see that

H' (', R) = H"(m, (P\a(V)), Ry = H*("'\a(V), R) = IR.

On the other hand AMI') < G being discrete and torsionfree it is well known
that A(I") = I' acts discontinuously and without fixed points on X ¢ BY Pro-
position 2.6 I' is also the fundamental group of the manifold

T\X,

which is of dimension < n. This implies that the cohomological dimension
of T' is strictly less than n. This is a contradiction. Note that since the dimen-
sion of V is > 3 the exceptional case in Proposition 2.6 cannot occur. -

2) M) is not discrete
Then the group
S =x\D)°

is a nontrivial connected solvable group by Auslanders theorem (2.5). We write
S for its Zariski-closure. If S contains unipotent elements, that is if the uni-
potent radical of S is nontrivial then by Corollary 2.3 and Lemma 2.4 we are
finished.
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If S contains no unipotent elements it is a torus. Then the certralizer CG (§)
of S in G has finite index in the normalizer N, (S). Let I, be a subgroup of finite
index in I" so that Fo centralizes S. Put

L, =x"}$Nr, <T
Since 1"0 centralizes )\(I‘l) the commutator
[T,,T,]

is contained in the group of translations T,. So TI', lies in the centre of FO.
Take a nontrivial element

7€F1.

Let V7 be the eigenspace for the eigenvalue 1 of A(y).
V7 ={ve V| 1, —NY) - v=0< V.

The space V,’ is left invariant by )\(l"o) since < is central in I"o. We prove
now:
There is a unique coset V7 + z so that the affine subspace

V 4z
1

is left invariant by ~.

This follows easily from the fact that A(y) is semisimple and hence 1 — A(7y)
is invertible on V/ Vy.

By conjugating the group 1"0 we may assume that z = 0. The group I‘0 then
also leaves invariant the affine space a(V,y). It follows that Fo acts disconti-
nuosly and quasitransitively on a (Vy).

We replace now FO by a torsionfree subgroup of finite index. The manifolds

Fy\a(v,)and Ty\a(¥)

are compact and have distinct dimensions. Since I'; is the fundamental group
of both, the argument using the cohomological dimension of Fo produces
a contradiction. [ ]

Proof of Corollary 1.5 We may assume that G << GL(V) is an algebraic group
since the result is clearly true of G is not algebraic. We have already proved
that T' is virtually polycyclic.Let A be a torsionfree soluble subgroup of finite
index in T'. A is an extension of an abelian kernel by A(A). We write ??(dA)
for the Zariski closure of A (A) in G. XZ'A) is either a torus in which case A(4)
is abelian or contains unipotent elements. If ):Z'A) contains unipotent elements
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then A(A) is contained in a parabolic P subgroup of G (Proposition 2.2).
P is an almost semidirect product: P = K x S where K is compact and S
is a split extension S = U x IR where U is unipotent of class < 2. We now
use the fact that the image of AN(A) in K/F (F =K N S) is abelian. L]

3. UNIPOTENT SIMPLY TRANSITIVE GROUPS OF AFFINE LORENTZ-
MOTIONS

In this section we shall analyse unipotent groups of affine Lorentz-motions
that act simply transitively on affine space. We start off by constructing some
examples.

Let n > 1 be an integer. We fix ann— 1-dimensional real vector space with
basis W = IR” ~!. On the vector space

R xWx R

we consider the quadratic form

q(x} w, Jv) = 2xy + Mywyf
which is of signature (»n,1). Asin the introduction we define
O(n, 1) = 0(g, R)
O(n—1)={o : W~ W|o islinearand oo’ =E, _,}.

M’t

g
E(n 1)= 3(0 l)lgGO(n,l), weE€IR x WxRI,

1 —v — — W
2
Un(n, 1) = 0 E vt |vew < 0(n, 1).
n-1
0 0 1
1
A —v — =2t wf
2
Pn, 1) = |NER*, vEW,
o Aot gEO — 1)
0 0 Al

Here En _1 isthe (n — 1) x (n — 1) identity matrix.
Un(n, 1) is a maximal unipotent subgroup of O(n, 1). P(n, 1) is a minimal
parabolic subgroup of O(n, 1). For u, v € W,r, s € R we introduce the follow-
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ing elements of E(n, 1) which have their linear parts in Un(n, 1).

1
1 —v —=w r
2
ot v
L;r, u s):= n-1 €EWm, 1).
0 0 1 s
0 0 0 1

The following is a simple computation.
LEMMA 3.1. Let W =R""! bean n — 1 dimensional real vector space, u, u',
v,V EWr, s r°s' €ER. Then

G Lr,u, s)-L;r' u',s" =

1
L(v+v',‘r+r'—vu"— 5 s'vu’,u+u'+s'v,s+s'),

1
() L(v:ru s) ! = L(— v, —r—vu + 35 sw', —u+sv, —s),
Gii) [L(v;r, u,s), L@ r, u', s

[ 1 1
= L(O;u’u' —wu't + 3 sv'v" — 5 sof, s'v—sv', 0).

We normalise commutators of elements g, # of a group G as:
le. h) =ghg~ 'n~1,
Lemma 3.1 will often be used without further mention in the proofs to follow.

Forelements w € W and s € IR we also define:

1 1

g, () :=Llsw, — — sSww', — 52w, s].
6 2

We have define g, (s) to satisfy:
' 0 —w 0 0]

o

g
N

o

0
g, (8)=exps
0 0 0 1

0 0 0 0
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This shows that the g (s) define a unipotent 1-parameter subgroup. We are
ready to introduce our groups.

DEFINITION 3.2. Let W = R" ! be an n — 1-dimensional vector space. We also
fix a linear map

Yy W-o>W
satisfying Y2 =0 and an element

weW
G(Y) :={L(Y(u);r.u, 0)|u EW, r € R}
Gy, w) :={GY), G(¥)- g, (s)| s ER}.

The following elementary proposition describes the group theoretic structure
of the G(¢, w).

PROPOSITION 3.3. Let W = R"~' be an n — I-dimensional real vector space,
Y W— W alinear map.with V2 =0 and wEW. Then we have

(i) G(Y) and G(y, w) are unipotent subgroups of E(n, 1).
(i} G(Y) is normal in G(y, w).

(iii) There is an exact diagram of groups

1
. {
O0-R->GW)-W->0
¥
Gy, w)

O « B«

where (r) = L(0;r, 0, 0).
(iv) 86(R) is central in G(y, w).

The following explain why we have introduced the G(y, w).

PROPOSITION 3.4. Let W = R"~! pe an n — I-dimensional real vector space
Y : W Wa linear map with v2 =0 and wEW. Then

(i) G(y, w) acts simply transitively on a(IR x W x R).

(ii) every subgroup U of E{n, 1) with NU) < Un(n, 1) that acts simply
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transitively on a(RR x W x IR) is equal to one of the G(y, w).
(iii) every unipotent subgroup of E(n, 1) that acts simply transitively on
aR xWx R) is E(n, 1) conjugate to a group G(y, w).

Proof. ) 0
(i) Follows since G(y, w) is transitive and the stabiliser of ( 1) is trivial.

(ii) We only sketch a proof here. For a point P € a(IR x W x RR) there is
aunique vy € U with

-+

Writing down the conditions for the possible <y to have a fixed point, we
arrive at the required result.

(iii) Any unipotent subgroup of O(n, 1) is conjugate to a subgroup of
Un(n, 1). L]

The classiﬁcaﬁon of the G(y, w) up to conjugacy in E(n, 1) is described
by:

PROPOSITION 3.5. Ler W = IR""! bpean n — I-dimensional real vector space
U, ¥ W W two linear maps with Y2 =y?2 =0 and w,w €EW. Then the
following are equivalent '
(i) there isag € E(n, 1) with
g6, we ™ =G, w)
(ii) thereisa \€ER* and a0 €EO(n.— 1) with
V' =Aoyo~l, AMlwof =w'.
Proof. Observe that if h € Un(n, 1) is nontrivial and g €0(n, 1) is an element

with ghg™! € Un(n, 1) then it follows that g € P(n, 1).
After this apply Lemma 3.6. m

LEMMA 3.6. Let W=R""! be an n— I-dimensional real vector space
Vv :W—>W alinear map and w € W. Let furthermore

A —v — — A r
2
0 o Ao u'
g:
0 0 Al 5
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be an element from P(n, 1). Then:

gG(Y, wig~! = G(havo !, AZwo').

Lemma 3.6 is proved by a simnle computation.

To classity the G(y, w) up to isomorphism we introduce the Lie algebras
of these groups.

DEFINITION 3.7. Let L be a field and let W = L”~1 be an n — 1-dimensional
L-vectorspace. For an endomorphism ¢ : W—-W and an element w € W we
introduce the following product on the vectorspace

LxWxL
[(r, v, 8), ¢, v, O =

= (YO — Y — swu't + s'wi', su(v’) — s'¥(), 0).

We call the so defined algebra g L (Y, w).

The product { , ] on gL(d/, w) is antisymmetric, it is a Lie algebra structure
if and only if the map

WxW->L

(u, v) > Y2 () - v"

is symmetric. This is always so in the cases which interest us here (11/2 = 0).

If L=R and ¢ : W—> W is an endomorphism with \,bz =0 andif wE€V
then 8 L(xlx, w) is the Lie algebra of G(y, w). For this consider the representa-
tion

6 8y, w) > End(R x Wx IR xR)

0 — Yu)—sw 0 r

0 0 Y@y +swt o uf
0:(r.u s) —~

0 0 0 s

0 0 0 0
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We have
exp(G(gIR(w, w)) = G(U. w).

Over any field L the algebrasg L (¥, w) can be classified up to L-isomorphism.
We give only a partial answer here.

DEFINITION 3.8. Let n> 1, k be integers with 0 <k < (n — 1)/2. For a field
L let W be a vectorspace of dimension # — 1 with basis

el’fl""’ek‘fk’€2k+1”"’en_1'

Let wk be the endomorphism of W defined by

V) =0, ¢, (fl=e, i=1,... k

"

Forany 0 <k <(n — 1)/2 we define the Lie-algebra,
Zin+1,k)=8,(y,,0)

for k # (h — 1)/2 put:

ZZi(n + l,k)=gL(l1/k- 62k+1)'

It is easy to prove the following classification result. See also Proposition
6.2.

PROPOSITION 3.9. Letr K be a field and W = K"~ 1 an n — I1-dimensional
K-vectorspace. Let  : W > W be an endomorphism and w € W. Then the

Lie algebra 8 L(w, w) is isomorphic to exactly one of the above defined
‘“I’L (n+1,k).

In table 1 we have computed a multiplication table for the Lie algebras
§24 ’iR(n + 1, k). Proposition 3.9 and Proposition 3.4 then imply Theorem 1.8.
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Table 1

Ln+1,k) LY +1,k) for
{r.81= 0 (o
{r. ¢l = 0 “Syiif all i
I7. 5= -¢ -¢ 1<j<k
le, e/.]= 0 0 all i, j
fep 1= 8% 5, -¢ 1<) <k
U £1= 0 0 1<i, j<k
($el= 0 0 all i
i5.51= 0 0 1<j<k

1 fori=j

i~ 0 for i#f

4, SIMPLY TRANSITIVE GROUPS OF EUCLIDEAN MOTIONS

We shall describe here the simply transitive groups of euclidean motions in
a way which will be convenient for us in the next chapter.
Let V-=IR" be a real vector space with basis. On the chosen basis we consider

the quadratic form

q=xf+... +xﬁ.
We write O(n) for its orthogonal group. We let furthermore
t
v

g
&En) = g(o l)]gGO(n),vEV

be the group of euclidean motions on a(}).
We shall now define some subgroups of & (n) which act simply transitively

on a(¥).

DEFINITION 4.1. Let 0 <d <n>1 be integers. We put

V,={0, X, )EV|x =...=x, =0}
Vd = {(x,,. ., X, )EV [ xy, = .. =x, =0
EIVd—>O(d)

be a continuous homomorphism with discrete kernel. We define the group
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e(u) 0 w!
E(e d)= 0 E uf |ueVd,weVd .
0 0 1

The set (€, d) is a subgroup of &(n). Note that for an € to exist it is neces-
sary that [(n—d)/2]>d  Here [x] is the biggest integer smaller than the real
number x.

PROPOSITION 4.3. Let 0<d,d'<n>0 be integers.
(i) The groups & (e, d) for homomorphisms

€ : Vd - O(d)
act simply transitively on a(V).

(ii) If & (e, d), E(’, d') are two groups attached to homomorphisms with
discrete kernels

€:V,>0(d), e :V,. >0(d)

then &(e, d) is &(n) conjugate to E(e’, d") if and only if:
d=d and g€Od), heOn-—-d)

with €' (wh=1)=gew) g™ !.
The proof of Proposition 4.2 is easy. The following result shows that the
&e, d) are essentially all simply transitive subgroups of &(n).

PROPOSITION 4.3: Let n > 0 be an integer. Suppose that H <&(n) is a group
that acts simply transitively on affine space. Then there isan 0<d <n anda
homomorphism with discrete kernel € : V, - O(d) so that H is conjugate
in&n) toé (e, d).

To prove Proposition 4.3 we need:
LEMMA 4.4. Let n > 0 be an integer. Suppose that H <&(n) is acommutative

group that acts simply transitively on affine space. Then H =T, that is
H is the full group of translations.

(n)?

Proof. We proceed by induction on n. The result is claar for » = 1. Suppose
now that n = 2. The group H acts by conjugation on Te(") and hence on
V = Ve(n). It leaves invariant the spaces Vf] and Vgl. Note that since H is

commutative, H acts trivially on V?].
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The group A(H) is a commutative connected subgroup of O(n), hence we

have

1
dim(A(H)) < [’5}

It follows that
dim (VIO{l) <n.

The stabilizer
H| = stab, a(V]")

acts simply transitively ona(Vgl). The result follows by induction. L]

Proof of Proposition 4.2. The group H acts by conjugation on the space
of all translations Te(n) and hence on V = Ve(n). It leaves the spaces V?{
and V) invariant. We put

H, = stab, (@(Vj")).

H, acts simply transitively on a(V;}l). By a theorem of Auslander [1] H,
is a connected soluble group. Hence )\(Hl) < O(n) is commutative. The kernel

H, =ker(\ : H, > O(n))

is subgroup of translations in V[(l”, hence H, is discrete. H, acts by conjuga-
tion on the discrete group Hz' Since ?\(Hl) is compact H1 has to centralize

fH,. For a given g EH1 we consider the map
le&, 1:H, - H,
g, 1:h—]g K]

The commutator subgroup of H, being central, the map [¢ ] is a homo-
morphism of the connected group H, into the discrete group H2. It follows
that H, is commutative. By Lemma 4.3 H, acts by translations on a(V([’{l).
We may consider the resulting homomorphism

€: Vgle H, - O(n),

where an element v is mapped to the corresponding translation in H, .

The image of € stabilizes VU4 and leaves ¥V U* pointwise fixed. Finally we
H g P
conjugate the pair of subspaces VS{ and V[({”' by an orthogonal matrix into

the standard pair. ]
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The above shows that the groups H < &(n) that act simply transitively on
affine space are all split extensions

O-R>H-Rl >0

with @ + b =n and R? acts orthogonally on R®. Conversely, it is clear
that every split extension of this type can be embedeed into &€ (n) as a simply
transitive group of euclidean motions.

5. NONUNIPOTENT SIMPLY TRANSITIVE GROUPS OF AFFINE LORENT Z-
MOTIONS

Here we shall describe the simply transitive groups of affine Lorentz-motions
which contain nonunipotent elements. To do this we introduce the following
subgroups of P(n,1). Here W =R" -1 jsan (n — 1)-dimensional real vector
space with chosen basis.

A0 0
Din, D)={| 0 o 0 ||AER* c€O(n- 1)),
0 o at!
1
1 —v — —w
pn, D=0 o o |o€O0(n—-1), vEW
0 © 1

PROPOSITION 5.1. Let n>1 bean integer.
(i) Let H < E(n, 1) be a subgroup that acts simply transitively on affine
space. Then H is E(n, 1) conjugate to a group H, with >\(H1)<P(n, 1).
(ii) Let H < E(n, 1) be a subgroup that acts simply transitively on affine
space. If H satisfies NH) < P(n, 1), then either NH) <p(n, 1) or NH) is
P(n, 1) conjugate to a subgroup of D(n, 1).

Proof.

(i) Since H is a soluble group the Zariski closure A(H) of A(H) is also so-
luble. It is then conjugate to a subgroup of the minimal parabolic P(n, 1) of
O(n, 1).

(ii) Let U be the unipotent radical of the Zariski closure of H. By [1] U
also acts simply transitively on affine space. So by proposition 3.4 it is equal
to a G(y,w). H normalizes U and hence by lemma 3.6 it follows that
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H<p(n, 1), unless ¢y =0 and w = 0. This being the case A(H) is a torus
and as such P(n, 1)-conjugate to a subgroup of D(xn, 1). -

We shall now separately discuss the two cases (A(H) <p(n, 1) or D(n, 1))
which have come up in Proposition 5.1.

A) Groups with N(H)<D(n, 1)

We keep here the conventions of section 4 concerning the coordinate subspaces

W, and W? of the vectorspace W =IR""1,

d

DEFINITION 5.2. Let 0<d<n—13>0 be integers,and W = R""! 4 real
vectorspace. Let

n:IRdoxIR—>O(d)

be a homomorphism so that n restricted to (0, W e 0) has discrete kernel.
Define

1 0 0 0 r
0 n(r,w,s) 0 0
D, @ m=| 0 0 E 0 w'| |rnseRweW, veEW?
0 0 0 1 s
0 0 0 0 1

Let 0<d, <d, <n-12>1 be integers, and W=R""! areal vector-
space. Let

miW, -0(d)),

be a homomorphism with discrete kernel so that the eigenspace for the trivial
character of the torus

uw) 0
0 P |W€Wd, <0(n-1)
is W i Let furthermore
3
T :Wd2 - 1R

be a homomorphism. Define
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[ er((wa Wy )) 0 0

0 0 r
0 0 vt
r(w,)
0 0 0 wt
D,(dy, 1 1) = . 2
0 0 01 0 wt | |ns€ER,
0 0 00ernmwng |¥1€¥
. (wz,wl)er’,
0 60 0O 0 1/ vewd | J

The following is the reason for the above definitions.

PROPOSITION 5.3. Let n>=1 bean integer.

(i) The sets D1 d, ) and D2(d1’ K, T) attached to data d, n and dl,u','r
as in definition 5.2 are subgroups of E(n, 1) that act simply transitively on
n + I-dimensional affine space.

(ii) Let n =1 be an integer. Let H<FE(n, 1) be a subgroup that acts simply
transitively on affine space and that satisfies MH)<D(n, 1) Then H is
E(n, 1)-conjugate to one of the groups D,(d, n) or D,d,, u, 7) with appro-
priate data,

Proof. The group H may be parametrized as ‘

e'r(r,w,s) 0 0 r
0 o(r,w, s 0 w!
H= ( ) |7, sER,wEWS,
0 0 e Thw.a)
0 0 0 1

with functions

T:RxWxR->R
0 :RxWxIR->0On-—1).

7, ¢ have to satisfy certain functional equations coming from the fact that
H is a group. These equations together with the fixed point freeness of H imply
7(r, w, s} = 7(0, wa(r, 0, 5), 0). This implies that H is the product of the fol-
lowing two of its subgroups:

1 0 o r
0 o(0,s) O 0
H1 = |r,s€lR
0 0 1 s
0 0 0 1
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ef(O,w,O) O 0 0
0 o(0, w, 0) 0 w#
H2: 0 0 e—T(O,w,O) 0 IWEW .
0 0 0 1

H , acts as a simply transitive group of euclidean motions on a(0 x W x 0) <
<a(R x W x IR). We use section 4 to find d and the homomoprhism € with
discrete kernel.

Assume then 7(0,w, 0) = 0 forall w € W. The computation of the commu-
tators [/, H2] shows that H has to be conjugate to a group of type D, (4, n).

If (0, w, 0) # 0 for some w € W, the computation of the commutators
[Hl, H2] shows that o(r, 0,s5) =1 forall r, s € IR. After this the same analysis
of commutators shows that H is conjugate to a group of type Dz(di’ u, 7).
Note that there is an element w € W so that o(0, w, 0) — En 1 is invertible
on the orthogonal complement of the eigenspace of the trivial character of the
torus

{0(0,w, 0)|we W}, =

~ Note that there is a certain obvious overlap amongs the groups of type
Dl(d, n). and Dz(dl, 4, 7). We have not included the classification of the
E(n, 1) conjugacy classes of the above groups. This can be done by elementary
means but is rather messy and includes the introduction of finer invariants (such
as the eigenspaces) of the homomorphisms € and 7, 7.

Note that the Lie groups H of type D, (d, n) are all split extensions

0->R »H-Rl -0
where b >2 and R? actson IR® through a homomorphism € : R® —0O(a)
such that the dimension of the connected component of the kernel of € does
not exceed 2. The groups H of type D,(d ,u,7) are split extension
0-R*>H->R -0

where @ >2 and R? actson IR? through a homomorphism
e : R? > R* xO(a —2)~> GL,(IR) where IR* acts trivially apart from 1-dimen-
sional eigenspaces for the identical character and its inverse.

All these groups can easily be classified up to isomorphism.

B) Groups with NH) < Pn 1)

We introduce the following subspaces of our real vectorspace R x W x R:
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u=1{r,00)|reER}, u={rw0)|reERweW},

together with the groups:

(3

~ g v ~ ~
, R= ( )|g€P(n, DHveuy.
0 1

R =

We start off with a group H < E(n, 1) that acts simply transitively on affine
space and satisfies A(H) < P(n, 1). Note that the groups Hy=HnN R is'normal
in H and satisfies H /H0 = IR.

We write H for the Zariski-closure of H and UH for its unipotent radical.
By a theorem of Auslander U, also acts simply transitively on affine space.
Since )\(UH) < Un(n, 1) by section 3 we find UH = G(t//H, WH) for appro-
priate ¥, and w,. The following gives a normal form for the subgroups

H
H0 < H which are of codimension 1:

PROPOSITION 5.4. Let H be a group with H < E(n, 1) that acts simply tran-
sitively on affine space and satisfies NH)<P(n, 1). H can be conjugated
by an element of E(n, 1) so that H; = H N R is of one of the following
shapes

(a)
1
1 0 —Yw,,wy) 0 — E Y(w,y, wo) - Yiw,, w3)’ r
0 e(w,) 0 0 0 Wt
ﬁ 0 0 E 0 Yw,, w3)’ w’2
0 0 0 E 0 wi |
0 0 0 0 1 0
0 0 0 0 0 1

w, EWL_ (w,,w)EW ,WEW, , rER.}
1 2

Here €:W; —-0(d,) is a homomorphism with discrete kernel and
VW, - w, N Wh  isa homomorphism with y?> = 0, for appropriate
1 1
integers d,, d2 with d1 <d,.
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(b)
1 0 0o 0 r
0 ew,r) 0 0 w’1
il o 0 E 0 Wtz IWIEW ,wzewdx,rEIR}
0 0 0 1 0 l
0 0 60 0 1

Here € : R x W& —0(d,) is a homomorphism and d, is an appropriate
integer.

Proof. We define H1 =(HN G(\,DH Nn°. H1 is a connected group hence there
is a subvectorspace V < W so that

1
1 =y - Y YyW@' r
{0 E Yy o
HR = [rERvEV
0 0 1 0
0 0 0 1

The group
H, =stabH(a(Vl N i)
acts simply transitively ona (V! N #) and satisfies
[H2, H2] <R.

An analysis analogous to that in section 3 together with some commutator
computations finishes the result. ]

Note that groups of type (a), (b) in the above proposition all act simply tran-
sitively on the affine subspace a (W).

Proof of Theorem 1.9. This result can now be read of from the normal forms
in Proposition 5.3 and 5.4. Under (ii) we have given an internal description
of the groups Dl(d, n). (iii) corresponds to the groups D2(d, u, 7). (iv), (v)
corresponds to the cases (a), (b) in Proposition 5.4 respectively. Here a commuta-
tor computation shows how the quotient H/H0 =1R actson H,.
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6. GROUPS ACTING DISCONTINUOUSLY AND QUASITRANSITIVELY
ON LORENTZ SPACE

We shall prove here our results on the abstract commensurability classes of
groups that act discontinuously and quasitransitively on Lorentz space. The
theorem of Fried and Goldman (1.5) reduces this problem to the study of the
abstract commensurability classes of lattices in groups of affine Lorentz transfor-
mations that act simply transitively on affine space.

We first treat the case of unipotent groups. Let U < E(n, 1) be a unipotent
groups acting simply transitively on affine space and let % be its Lie algebra.
Let T < U be a subgroup that acts discontinuously and quasitransitively on
affine space. We write

My(DY<U

for the Malcev completion of T. MQ (I') can be described as the radicable hull
of I',[16],[24]. We put

M(D) :=exp™ ! (Mg ().
j[Q (I") is a rational Lie subalgebra of % with the property that the map
Re 0 Jﬂo ) U

is an isomorphism. That is ”ZIQ (I') is a Q-form of the real Lie algebra % .
Given a Lie algebra .# over Q and an isomorphism of Lie algebras

]R®QME>QI

we may construct a group I' < U in the following way. Choose, as is always
possible, a Z-lattice .//lz < A invariant under the bracket and define

I =(exp(6(M, )

to be the group generated by the set exp(O(./llz )). T acts discontinuously and
quasitransitively on affine space and has the property # D= 0(#). The
set exp(6(AM,)) is enclosed as

I <exp(0(M,)N<T,

between the groups l"1 , I‘2 that act discontinuously and quasitransitively on
affine space and satisfy | I',/T"; | <eo, [19].

It is well known that two torsionfree finitely generated nilpotent groups
are abstractly commensurable if and only if the Lie algebras # 0 (I‘1 ), .IIQ (I‘l)
of their rational Malcev completions are isomorphic, [13]). So, to describe the
abstract commensurability classes of the groups I' we have to find the Q-forms
of the real Lie algebras Z'(n + 1, k) and Z2(n + 1, k). To do this we
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introduce a class of Lie algebras which might be of independent interest.

DEFINITION 6.1. 1et L bea field and let &, m > 0 be integers. Let
E=1¥ F=1F G=1"

be L-vectorspaces of the indicated dimensions. We write e, fl g; for the cano-
nical basis elements of E, F, G respectively and define the linear isomorphism

F—>E; :fl.=el., i=1,...,k
Put

W=FeFedG
Let

=y Top g W=FeFeG->L

be a linear map.
Let furthermore S € Symk (L) be a symmetric k x k matrix with entries
in L and det( )# 0. On the L vectorspace of dimension 2k + m + 2

LeWel

we define the product

[(r,u,8), (', v, s =

=(f'Set — fSe" +s'ou) — s, sT-sf',0)
where

rsr s €L u=e +f4+g u =+ +g €W

We write 8, (k, m, ¢, S) for the vectorspace L ® We L with the product
.1

8, (k, m, ¢, S) is always a nilpotent Lie algebra of nilpotency class < 3. Writing
z=(1,0,0) and 7 = (0,0, 1), we find the following defining relations for
g, (k,m p,(s;)).

(7. el =—ogle) -z i=1,...,k
[r. fil=—e;, =0 (f) 2 i=1,...,k
* [7. 81=—y;) 2 i=1,...,m,
e, ,1=0, (£, 5;1=0 Lpi=1,...,k

[ei,g].]:O, [fl.,g}.]=0 i=1,...,kj=1,...,m,
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[g,.,g].]=0, Lji=1,...,m,

[ei,j;]zsi].-z ij=1,...,k
Note that

By w) =g, (k. m o E)

where g8 L(tl/, w) is one of the Lie algebras defined in section 3 and & m, ¢
are appropriately chosen. Similarly

Zoln+ 1,k S)= 8ok n—1-2k ¢ ,.5)
for appropriate @) 5

PROPOSITION 6.2. Let L bea field and let g, (k, m, v, S) and g, (k', m',¢', S")
be two of the Lie algebras defined in 6.1. Then the following are equivalent:
(i)g, (k, m, ¢, S) is isomorphic to g, (k', m " 8.
(ii) k=k'.m=m', and there are X E GL, (L) and Y€GL, (L), and
o€ L\{0} so that:

S'=aX S X, gp'Gz‘pG Y.

Proof. The proof is obtained by writing down a linear isomprphism 6 on
the natural basis given in definition 6.1. @ is a Lie algebra isomorphism if certain
relations between the entries of 6 hold. An elementary analysis of these rela-
tions implies proposition 6.2. .

Proposition 6.2 can be used to classify the Lie algebras g L(k’ m, ¢, S). For
the linear map ¢ we have only to consider two possibilities.
Next, we have to classify symmetric nondegenerate &k x k matrices S up to
the equivalence relation:

§'~Se=8 =oa XSX' with « €L*, X €GL, (L).

Over the field L of real number § and S’ are equivalent if they have the
same or opposite signatures. Two symmetric matrices S, §' € Symk(Q) can
only be equivalent over L = Q if they have the same or opposite signatures.
We note here the following obvious consequence of the theorem of Hasse and
Minkowski.

PROPOSITION 6.3. Let k = 1 be anintegerand let S, S’ € Symk (Q) be positive
definite symmetric matrices. The following are equivalent

(i} S'~S over Q,

(ii) da € Q with o >0 such that
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(o* - det §) (det S~ ! € ©*? and
k(k-1)

det(S), « ) (a, a2

Cp (S) - ( ) = C (S") forall primes p.
p p P

a b
Here Cp (S) and ( ) are the usual Hasse symbols at p.
14

PROPOSITION 6.4. Let K < L be fields. Let yL(k, m, ¢, S) be a Lie algebra
as defined in 6.1. Let # < g, (k. ni, 9, S) bea K-Lie algebra so that the natural
map

Le, %—»gL(k, m, ¢, S)

is an isomorphism. Then there is a K-linear map ¢’ and an S' € Symk (K) so
that

H= g, (k,m ¢, S)
as K - Lie algebras.
Proof. The result is clear for k = 0. So we assume that k > 1. We choose
in g L (k, m, ¢, S) its natural basis z, € f' g, T which satisfy the relations

(*). We shall construct now in ¥ a K-basis which also satisfies our relations (*).
We have

[H [ K=K 2

with 2 = 7z for some w € L. This follows since the Lie algebra gL(k, m, ¢, S)
has a similar property. Furthermore the commutator algebra

[, ]
has dimension % + 1 and is contained in L -(z, 2, ..., ¢ ). We choose a
basis 2, é,... ., ék of [J#,#]. The elements 2, satisfy [@I., éj] =0 for i,j=
=1,...,k since

[, ), [ #,]] = 0.

The center of the Lie algebra J¢ /[[#,# 1, ] has dimension k + m and
its preimage in J is contained in L -4z, e;, ..., €., & ,-..,8&) Weadd
elements to obtain a basis:

z,él,...,é Y ST
of this space. Clearly the ep & all commute with each other. We choose
T =0

+ 7T

0 0
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fi=v +m7

PN

fk=v tmT

with m, €L 7, +0,0, €Lz, e, ..,¢.,8,.--,8,)s0that £,&,...,&,
fioee- f,g,-..,gm 7 1saba51sof9i”.
By a simple computation we find

[ £l =mag 27, A —m 5 (5, £, D,

This shows that the [7, fl 1,...,17, fk] are L-linearly independent and that
7ri1r0‘1 €K fori=1,..., k.

We change our basis so that m, =...=m, = 0andso that
(**) L fl=—é+0N2 i=1,... .k
with )\ eK.
We now show how to enforce [f j;] =0 fori, j=1,...,k. Consider the

following bilinear map which is induced by the commutator
B[, K]/ k- 2xFIE~>kZ

Here F=K<2,é,,...,8,f,....f) and E=K &, &,,...,8). Bis
nondegenerate, smce this is true over L. It follows that we can change the f
by elements from £ so that they satisfy [f, f] =0 for i,j=1, , k. We

then change the e so that (**) is satisfied. Note that a simple computation
using the Jacobi identity shows that the matrix (sl.j) defined by

6, f1=5.2

y

\.*'»

is symmetric. -

Proof of Theorems. 1.10, 1.11, 1.14, 1.17. let T < E(n, 1) be a subgroup
that acts discontinuously and quasitransitively on affine space. Let H be its
kristallographic hull (Theorem 1.5). H < E(n, 1) acts simply transitively on
affine space and A = H N I' is of finite index in I". H can be conjugated to one
of the types of groups described in sections 3 and 5.

A) H is unipotent

By section 3 H is conjugate to G(y, w) for suitable ¢ and w. The Lie
algebra A ¢ (&) is isomorphic over Q to some Lie algebra g Q(k, m, ¢, S).
It is a simple matter to see that A has to be nilpotent of nilpotency class < 3
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and has to satisfy (ii) of Theorem 1.1. In Theorem 1.14 we have for every iso-
morphism class of g Q(k, m, ¢, s) constructed a particularly nice group
Fl.(n + 1, k, m) that acts discontinuously and quasitransitively on affine space
and satisfies ,///Q(Fi(ll + 1.k m) = BO(k' m, g, ). It is clear from the results
of this section that Theorem 1.14 is valid.

B) H satisfies T(H)y< D(n,1)

We conjugate H so that H = D] (d, m) or D:(dl , 4. 7). The group of all
translations < E(n, 1) is the unipotent radical of H. By [2] A(4) is discrete
in a(i, 1) or R* x (5., 1). In the first case A is virtually abelian. In the second
the image of ANA) in IR* has to be discrete and hence cyclic. So in this casc
A is virtually abelian by cyclic. This proves Theorem 1.10.

In case A is not virtually abelian take a subgroup AO < A of finite index
with M4 ) N (n, 1) =<1). A, has Ay NI as abelian normal subgroup. It
is clear that a generator of the cyclic group 4A,/5; N g acts by a Lorentz
type matrix on the discrete group A, N g < 9. This proves Theorem 1.15
(1). It is obvious that every group of the type described in (ii) is a lattice in a
simply transitive group H < E(n, 1) with AN <D, 1).

C) H satisfies N(HY<P(n. 1)

In this case [2] implies that I' is virtually nilpotent. =
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