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Abstract.Let A’
1 be the n-dimensionalaffine spaceover JR andA (n) its groups

ofmotions.Themap A: A (n) -÷ GL~(JR)associatesto an affine motion its linear
part. In the first part of the paperwe provethat anysubgroupF’ ~ A (n) which
acts discontinuouslywith compactquotienton A’1 and which has theproperty
that X(f’) is containedin a Liegroupofrank ~ 1 is polycyclicbyfinite. Thesecond
part of the paperclassifies suchgroups which satisfy X(F) ~ 0 (n — 1, 1) up to
commensurability.

1. INTRODUCTION

Let V be a real vectorspaceof finite dimension n. We write a(V) for the
affine spaceassociatedto V and Aff ( V) for the group of affine motions on
a(V). Choosinga basisin Vwe maymake the following identifications:
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a(IR’5)=

Aff(~)= ~ wt) gEGL(~), ~

The action of Aff(JR’2) on a(IR’1) is thengivenby theusualmatrix product.

At stands for the transposeof a matrix A. A subgroup F ~ Aff(V) is said
to act discontinuouslyon a(V) if for everycompactset K ~ a(V) the set

{YEFI
7K fl K~Ø}

is finite. A group which acts discontinuouslyis discrete in Aff(V), but the

conversedoesnothold in general.
The group F ~ Aff(V) is said to act quasitransitively on a(V), if there

is a compactset K ‘~a(V)sothat

a(V)= U 7-K.
~‘EF

The simplest examplesof groups that act discontinuouslyand quasitransi-

tively on a (V) are

1 V~

vEf~01

where ~2 ~ JR” is a full lattice. It is easyto seethat agroup F ~ Aff(V) that

acts discontinuously and quasitransitivelyon a(V) is finitely generated.The

following is a longstandingproblem:

CONJECTURE1.1. Let V bea finite dimensionalreal vectorspaceand r ~ Aff (V)

a subgroup which acts discontinuouslyand quasitransitively on a(V). Then

F is virtually polycyclic.

If ~ is a property of groups, then the group G is calledvirtually ~ if
G hasa subgroupof finite index satisfying .~?i’. A group G is calledpolycyclic

if it hasa seriesof subgroups:

sothatG1~1/G1iscyclicforall0~i~n—l.

Originally conjecture 1.1 was posed even without the assumption that F

acts quasitransitively [18]. In [17] the second author gave a counterexample

to this stronger conjecture.Conjecture 1.1 hasbeensolvedaffirmatively in case

thedimensionof V is 1,2,3, [9].
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Let F ~ Aff(V) be a subgroupthat acts discontinuously,quasitransitively

and without fixed points on a(V). The latter means
7P = P for ~ E F and

P E a( V) implies 7 = 1. In thiscasethe set of orbits

F\a(V)

inherits from a(V) the structureof a complete,affmely flat compactmath-
fold. It is easy to see that every such manifold arisesas such a quotient. By

a theoremof Selbergevery finitely generatedlineargroupcontainsa torsionfree
subgroupof finite index. It follows that conjecture 1.1 can be given the equi-

valent form:

CONJECTURE 1.1’: Let M be a complete,affinely fiat compactmanifOld. Then

its fundamentalgroup it1 (M) is virtually polycyclic.

Given a fmite dimensionalvectorspaceV wedenoteby

A: Aff(V)-÷GL(V)

the canonicalhomomorphismwhich assign to an affine motion its linear part.

The kernel of A consistsof the pure translations.In coordinates A is given

by:

g w~’

A: 1 g

For asubgroup F ~ Aff ( V) we introduceits groupof translations:

lwt 1 t/
T =Ffl wEV V = vEV~ El’.

01 F 0 1

DEFINITION 1.2. Let V be afinite dimensionalreal vectorspaceand G ~ GL(V)

a closed subgroup with finitely many connected components. A group

F ~ Aff(V) is called G-linear if X(F) ~ G.

The following areimportant specialcasesof theabove concept.Let V have

dimension n, take a basis, and write 0(n), for the orthogonalgroup of the

quadraticform

~

on the chosenbasis.The G =0(n)-linear groups are the groups of eucidean

motions.The orthogonalgroupof the quadraticform
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~
0xn+x~+... +x~_1

which is of signature (n, 1) is denoted by 0 (n, 1). The G = 0 (n, 1)-linear

groupsarethe groupsof Lorentz-motions.
Let G ( GL(V) be a closedsubgroup.The real rankof G is denotedby

rk~G.

This is the maximal dimension of a subgroupof G isomorphic to an IR-

split torus, that is (IR*yI. See Helgason[14] for the details in the theoryof
Lie groups.Weprovehere:

THEOREM 1.3. Let V be a finite dimensionalreal vectorspace.Let G ( GL(V)

be a closedsubgroupwith finitely many connectedcomponentswhich is reduc-

tive and satisfies rk~G ~ 1. Thenany G-linear subgroupF ~ Aff (V) which

acts discontinuouslyandquasitransitivelyon a (V) is virtually polycyclic. U

Theorem 1.3 has two predecessors.If G = K ~ GL(V) is compact,that is

rk~G = 0 thena G-linear groupis conjugateto an 0(n)-lineargroup.Thetheo-
rem of Bieberbach[4] may be applied andprovesthatF is evenvirtually abelian.

If F is a groupof Lorentz-motions,that is A(F) ~O(n, 1), (n + 1 = dim~V),

then Goldman and Kamishima [11] have proved the aboveresult. Our proof

is similar lo that of GoldmanandKamishima.We use inductionon the dimension
of V. We distinguishthe casesthat A(F) is discreteor not. In thefirst instance
we use the same cohomologicalargumentas [11]. In the secondcaseour argu-

ment differs from that in [11]. We use a generaldescriptionof the closedsub-
groupsof the reductivegroupsof realrank 1.

We mentionthat a reductivereal group of rank I is isogenousto one of the

following types.
1)IR*xK, Kcompact

2)O(m,1)xK, Kcompact, m~l
3) U(m, 1) x K, K compact,m ~ 1
4)Sp(m, 1) x K, K compact,m ~t I
5) F4 lix K, K compact.

We usehere the terminologyof Helgason[14]. Thesimbol x standsfor almost

direct product. If the group G mentionedin Theorem 1.3 is evensemisimple

then it is Zariski-closed.If not G is isogenousto IR* x K where K is compact.
In the latter case proposition2.3 implies the statementof Theorem1.3. Hence
we can, without loss of generality, assumethat G is an algebraicsubgroup

of GL(V).
Weproceedby investigatingthe following a bit vaguelystatedproblem.
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PROBLEM 1.4. What can one say about the isomorphismand con/ugacyclasses

of virtually polycyclic groups that act discontinuously and quasitransitively

on affinespaces?

The following is easily,deducedfrom theorem 1.3. It showsthat thestructure
of the virtually polycyclicgroupsarisingin theorem1.3 is quiterestricted.

COROLLARY 1.5. Let V be a finite dimensional real vector space.Let

G ~ GL(V) be a closedsubgroupwith finitely many connectedcomponents

which is reductive and satisfies rk~G ~ 1. Then any G-linear subgroup

F ~ Aff ( J/) which acts discontinuouslyand quasitransitively on a(V) has

a seriesofsubgroups

(l)~F0~ F1~F2~F3~F4 =1’

with

(i) F0 is abelian,

(ii) F1 /F0 is nilpotentof class ~ 2,

(iii) F2/F1 isabelian,

(iv) F3/F2 isabelian,

(1’) l’4/F3 is finite. U

Note that any subgroupof a virtually polycycic group is finitely generated,
so that we have a little mere information about the subquotientsoccurring

in Corollary 1 .5.
The main tool in the finer investigationof problem 1.4 is a theoremproved

by Fried andGoldman[9].

THEOREM 1.6. Let V be a finite dimensionalreal vectorspaceand G ~ GL(V)

a Zariski closedsubgroup.Let F’ ~ Aff ( V) be a G-linear virtually polycyclic

group that acts discontinuouslyand quasitransitively on a(V). Then there is

a subgroup H ~ Aff( V) which is G-linear with:
(i) H actssimply transitively on a(V),

(ii) H fl F hasfinite index in F’,
(iii) H fl F is a lattice in H, i.e. H fl F is discreteandcocompactin H. U

Theorem1 .6.splitsProblem1.4 virtually into two separatequestions.

PROBLEM 1 .4’. Let V be a finite dimensionalvectorspaceG ~ GL(V) a closed

subgroupwit/i finitely manyconnectedcomponents
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(i) Classify the subgroups H ~ Aff( V.) which are G-linear and act simply

transitively on a( V).
(ii) For eachgroupwhichoccursin (i) classify the latticesin H.

Both parts are usuallyvery difficult. A guiding line is given by the Bieberbach
theorems(G = orthogonalgroup). Of courseany group H ~ Aff ( V) that acts

simply transitively on a (V) is a connected,simply connectedLie-subgroupof
Aff’( V). Auslander[I] has furthermoreshown that II must be soluble. At the
moment thereis no solubleconnectedsimply connectedgroupwhich is known

not to act simply transitively on some affine space.The first part of Problem

1.4’ can be put in stagesof increasingdifficulty. One might ask for a classifica-
tion of thegroupsup to isornorphismor up to conjugacyin Aff( V).

Sections3, 4, 5, 6 of our papercontaina treatmentof Problem 1.4’ in case
of Lorentz-motionsthat is C = O(n, 1). Our classificationscontain the results
of Auslanderand Markus [3] (n = 3) and Fried [10] (n = 4) as specialcases.

We shall describeour resultsnow in moredetail, For this let W = JR’
5 — 1 be

an (n — 1)-dimensionalvectorspacewith basis.On the vectorspaceof dimension
n+2

1RxWxJR

We considerthe quadraticform

q(x, v,y) = 2 xy + vv~

of signature(n, I). The group:

g wt
E(n, l)= gEO(q, IR),wElRx Wx IR

is called the group of affine Lorentz-motions.O(q, IR) is the real orthogonal

groupof the quadraticform q.
First of all we describeour classificationof the isomorphismtypesof unipotent

subgroups U ~ E(n, I) which act simply transitively on affine space.For each

dimension thesegroups fall into finitely manyisomorphism types. We shall
give presentationsfor the Lie algebrasof the possibleU.

DEFINITION 1.7. Let n ~‘ 1,0 ~ k ((n — 1)12 i=l,2 be integers. Let’r

be a realvectorspaceof dimensionn + 1 with basis

~, e~,. . . , ek, f
1 , ‘~k’ e2k+ 1~ , . , e~~ r.

On ‘1”~we define the structureof Lie algebras~ ~(n + 1, k) by the multipli-
cation tablesin table I. ~71 (n + 1, k) is definedfor any
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n—I n—I
0(k~ ,.~2(n—1,k)fork�-———.

2 2

We write L1(n + 1, k) for the connected,simply connectedLie groupwith Lie

algebra~‘(n + 1.k~

The Lie algebras .~‘1(n+ 1, k) are all nilpotent of nilpotency class ( 3.

They aremutually nonisomorphic.

THEOREM 1.8. Let n ~‘ 1 be an integerand H a connected,simply connected
nilpotent Lie-group of dimension n + 1 Then thefollowing two statements
are equivalent

(i) Thereis a subgroup U ~ E(n, 1) which acts simply transitively on affine

spaceand is isomorphicto H,
(ii) His isomorphicto oneofthe L’(n + 1, k).

This result is provedin section3. We also give a set of representativesfor the
E(n, 1) conjugacyclassesof thesimply transitiveunipotentsubgroupsH~~(n,1).

The caseof a generalgroup H ( E(n, 1) actingsimply transitivelyis treated

in section4. Sucha groupis necessarilyconnected,simply connectedandsoluble.
In section 4 we give a detailed descriptionof thesegroups which implies the

following result.

THEOREM 1.9. Let n ~‘ 1 be an integerand H’( E(n, I) a subgroupthat acts

simply transitively on affine space.Then H is of one of the following types
(i) H is unipotent,
(ii) H Is a split extension 1R’~ >~JRb wherea + b = n + 1 and R” actsortho-

gonally on JR0

(iii) H is a split extension IR° ~ JRb where a + b = n + 1 and a~2, and
actsthrougha homomorphism

JRb ~fl~* xO(a—2)-+GL
0(JR)

on 1R
0, whereIR* acts trivially up to onedimensionaleigenspacesfor the iden-

tical characterandits inverse,
(iv)H isa sequenceofsplit extensions

H=(H
1 xH2)xH3.

H1 = Ra H2 = lRb H3 = JR and a + b + 1 = n + 1. HereH1 is normalin H
and H acts orthogonally on H1. The group 113 acts trivially on the quotient
(H1 q H2)/H1,
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(v) H is a sequenceofsplit extensions

H=((H1 xH2)xH3)~H4,

H1 = 1R

0, H
2 is an unipotentgroup with at mostone dimensionalcommutator

subgroupand of dimension b, H3 = IRC, H4 = JR and a + b + c + I = n + I.
Here H1 and H1 x H2 are normalin H and H acts orthogonallyon H1

and H2. H3 also normalizesH2 and H4 acts trivially on
((H1xH2)xH3)/H1 xH2.

In fact it is clear from section 5 that every groupof type (ii), (iii), (iv) canbe
embeddedinto E(n, 1) as a simply transitive group of affine motions. The
type (v) hasto be further restrictedso that this is possible.We shall not discuss

thishere.
Next we want to explain our resultson groups F ~ E(n, I) that act disconti-

nuouslyand quasitransitivelyon affine space.Our aim is to describeup to finite
index the isomorphismtypes of thesegroups.Rememberthat one of the Bie-
berbachtheoremssaysthat a quasitransitiveand discontinuousgroupof euclidean

motions on lR’5 containsa normal subgroupof finite index which is isomorphic
to Z’5.

THEOREM 1.10. Let n ~‘ I be an integer, and F ( E(n, 1) a subgroupthat
acts discontinuouslyand quasitransitivelyon affine space. Then falls into one

of thefollowing two types:
(i) F is virtually nilpotent,
(ii) F is virtually (abelian by cyclic).

Let be two propertiesof groups.A group G is called .9~ by

if G. containsa normal subgroup H with property ~ so that the quo-
tient G/H hasproperty ~

Theorem 1 .10 can be considerablysharpened.The groups arising under (i)

and (ii) can be further restricted.We first of all discussthe virtually nilpotent
cases.

THEOREM 1.11. Let n ~ 1 be an integer,and F ~(E(n, I) a virtually nilpotent

subgroupthat acts discontinuouslyand quasitransitivelyon affine space. Then
F containsa subgroup F1 offinite index with thefollowingproperties:

(i) F1 is ni/potentofnilpotencyclass~ 3

(ii) F1 containsa normal subgroup ~‘2 which hascyclic or trivial commutator

subgroupandso that F1 /F2 7L.

It is a simple matter to classify finitely generatednilpotent groupswith cyclic
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commutatorsubgroups[13]. It so happensthat not every cyclic extensionof

thesegroups occursas a group F’ ( E(n, 1) that actsdiscontinuouslyandquasi-
transitively on affine space. To clarify this point we introduce the following
notion.

DEFINITION 1.12. Let F0, F1 begroups.They aresaid to beabstractlycommen-

surable if thereare subgroups0~( F0 and 0~~ F1 with:
(i)theindicesjF1 :0~Iarefinite,
(ii) 00 and01 are isomorphic.

For example ~ and F’1 might lie in a common overgroupand intersect
in a subgroupof finite index in both.

Let F’0, [‘~ be two finitely generatedtorsionfreenilpotentgroups.We write
MQ(Ft) for their rational Malcev-completions.The MQ (F’1) are Q points of

unipotent algebraic groups defined over Q. F0, F1 are abstractlycommen-

surableif and only if MQ (F0) and MQ (F1) are isomorphicas Q-groups.This
is the case if and only if their Lie algebrasare isomorphic.For all of this see
[13].

Let H be a connected,simply connectednilpotent Lie group. Then it is in

generalquite difficult to classify the abstractcommensurabilityclassesof lattices
(i.e. cocompactdiscretesubgroups)in H. If H has a lattice thenthe Lie algebra
)~°ofH is definedover Q. It can be proved[13] that the abstractcommen-

surability classesof latticesin H correspondto the elementsof the trivial fibre
of the naturalmap of Galoiscohomology-groups

H
1 (Q, AutQC$’~’))-~H’(lR, AutQ ()t~’)).

where AutQ (~°)is the automorphismgroup of ,~°consideredas an algebraic

Q-group.
We are hereableto classify the abstractcommensurabilityclassesof thegroups

arisingin Theorem1.11 by equivalenceclassesof quadraticforms.

To do this we introducethe following groups.

DEFINITION 1.13. Let n, k beintegerssothat0’(k((n — 1)/2. For

m= (m
1, . . . , m~~)E(2 . IN)k we defineV’~= ~ ,V’~) and

~

We also definethepositive definite quadraticforms

~ =m1y~ +.. .+mkyl.

We furthermoreput
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F~(n + 1, k, m) =

1 0 0 —x __xxt r
2

0 E 0 0 0

OOE 0 0 x
= jr,sE7L;x,y EL(~/~);

0 0 0 E xt j,t
z E ~n —1 —2k

000 0 1 s

000 0 0 1

n—i

If k < we write e1 = (1,0 0) E 7Z’~ -1—2k andput
F2(n+ 1,k,m)=

1 — 2se 0 —x — —(4s
2+xxt) r

2

0 E 0 0 2se~’ z~

0 0 E 0 0 x~
= r,sE7L;x,yEL(\/~);

0 0 0 E xt yt ZE~n-1-2k

0 000 1 s

0 0 0 0 0 1

The symbol E standsfor the unit matrix of the appropriatedimension.The
sets F

1(n + 1, k, m) are finitely generatedtorsionfree nilpotent groups that

act discontinuouslyandquasitransitivelyon affine space.The groups F~(n+ I,
k. m) areall extensionswhere Hk is the discreteHeisenberggroupof rank2k + 1.

The groups F1 (n + 1, k, m) and F. (n’ + 1, k’, m’) areabstractlyisomorphic
if and only if i = j, n = n’, k = k’ and if the quadraticforms and ~ are
up to sign integrally equivalent.

THEOREM 1 .14.Letn ~ I bean integer
(i) Let F ( E(n, I) be a virtually nilpotentgroup that acts discontinuously

and quasitransitivelyon affine space then F is abstractlycommensurableto
oneofthegroups F1(n + l,k, m).

(ii) The groups F1(n + 1, k, rn) and F1(n’ + 1, k’, m) are abstractly commen-
surable if and only if the following hold i = j, n = n’, k = k’, and there is an
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~ E Q* so that the quadraticforms ~ and ~ . q,,~,are equivalentover Q.

The equivalent classesof nondegeneratequadratic forms over Q can be

describedby the Hasse-Minkowskitheorem.The invariants of an equivalence
are: dimension, determinantand the vector of Hassesymbols [8]. In Theorem

.14 a slightly stronger equivalencerelation amongst quadraticforms arises.

We havedescribedin Proposition6.13 the modificationswhich haveto bemade
to affine invariantsfor this relation.

We shall now give a descriptionof the virtually abelianby cyclicgroupswhich

arisein Theorem1.10, (ii).

DEFINITION 1.15. Let n ~‘ 1 be an integerandA E GL~(Z)an invertiblematrix.

Let the cyclic groupZ act on Z’5 by

1 •v=A .v~,

We write

F(n+1,A) _ZiA7L

Let n ~ 3. We call a matrix A E GL~(Z) of Lorentz type if it is diagonali-
zableand its eigenvaluesare

l,A,A~,a
1,. . . ~

where A is positiverealandall a1 satisfy a, = I.

Nonumpotentmatrices A E SL2(7L) with positive eigenvaluesare of Lorentz
type. Any matrix A E GL4(Z) with characteristicpolynomial (x —1) (x

4—
— 4x3 + 4x2 — 4x + 1) is of Lorentztype.

Wehavethefollowing obviousresult describingthe classificationof the

F(n + 1,A).

PROPOSITION l.16.Let n~l bean integerand A,A’EGLn(7L).Then:
(i) F(n + I, A) F(n + 1,A’).~=s’A is GL~(Z)conjugatetoA’ orA’~,
(ii) F(n + I, A) is commensurablewith F(n + 1, A’) A~is GL,~(Q) conjuga-

te to A” for somer, sE 7L \ ~0}.

THEOREM 1.17.Let n ~‘ I beaninteger. Thenthefollowinghold
(i) If F ( E(n, 1) isa subgroupthatactsdiscontinuouslyandquasitransitively

on affine spaceand F is notni/potent by finite then F containsa subgroup
F

0 of finite index so that F0 is isomorphic to a group F(n + 1, A) where
A E GL(Z) is ofLorentztype

(ii) Every F(n + 1, A), where A is ofLorentz typecan be embeddedinto
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E(n, 1) asa discontinuousquasitransitivegroupofaffine transformations.

Proposition1 .1 2 andTheorem 1.13 give a descriptionof the abstractcommen-

surability classesof groups F ( E(n, 1) which act discontinuouslyand quasi-
transitively on affine spaceandthat are abelianby cyclic, relativeto the GL~(Q)

conjugacyclassesof certainmatricesin GL~(Z).
The groups F,(n + 1, k, m) and F(n + 1, A) areall torsionfree,so they are

all fundamentalgroupsof n + 1-dimensionalcompletecompactaffine Lorentz-
manifolds (space-times). Our results imply that every fundamentalgroup of a
manifold of this type is abstractlycommensurablewith some F

1(n + I, k, m)

or F(n+ l,A).

The Bieberbachtheoremssay that in each dimensionthere are only finitely
many isomorphismtypes of discontinuous,quasitransitivegroupsof euclidean

affine motions and they are all abstractlycommensurable.In addition to the
above classificationof the abstractcommensurabilityclassesof discontinuous,

quasitransitivegroupsof Lorentz affine motions we can add the following result
on the possibleisomorphismtypes.

THEOREM 1.18.Let n ~ 1 be an integer, H’( E(n, 1) beaunipotentsubgroup
thatactssimply transitivelyon affinesnace.Fixa subgroup1’ ~ H thatactsdisconti-

nuously andquasitransitively.Then theJO/lowing setof groupswhichact discon-

tinuouslyand quasitransitively

{L~~<E(n,l)~ (i) ~flH=F, (ii) L~: FI<oo}
falls into finitely manyisomorphismclasses.

Theorem1.18is provedin [12]. The proofusedmethodsfrom [23].

We thankDan Segalfor many helpful discussions.

2. GROUPS ACTING DISCONTINUOUSLY AND QUASITRANSITIVELY
ON AFFINE SPACE

In this section we shall give a proof of Theorem 1.3. Westartoff by establish-
ing some technical results. Our proof will work by inductionon the dimension

of V. First of all wedescribea device to divide out subspacesfrom V.
If thegroup H actson the set S and S’ C S is a subsetwe write

StabH(S’)={hE HI hS’CS’}

for the stabilizer of S’ in H. Supposenow that V is a finite dimensional
real vectorspaceand V0 ( V a subspace.By rv we denote the natural
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homomorphism

r~ :StabGL(V)(VO)-+GL(V/V0).

Wealso havethehomomorphism

~ :A~(5tabGL(V)(VO))-÷Aff(V/VO)

g wt V0+z~ V0+gzt+wt
pv =

‘01 1 1

The kernelof p ~. clearly is

kerp~ = Stab Aff( V)(a( V0)) flX 1 (kerr~).

LEMMA 2.1. Let V be a finite dimensionalreal vectorspace,F’ ( Aff ( V)

a subgroup that acts discontinuouslyand quasitransitivelyon a(V). Assume
that V0 ~ V isa subspacewith

(i) ?,.(F’)~<StabGL(V)(V0),
(ii) ker fl F acts quasitransitivelyon a(V0).

Then p~°(F’)acts discontinuouslyandquasitransitivelyon a(V/V0).

Proof: Clearly (F’) actsquasitransitivelyon a (V /V0).

Let K be a compactset in a(V /V0). Choosea compactset K’ ( a(V) so
that the image of K’ in a(V/V0) is K andso that the translatesof K fl a(V0)

underkerp~, fl F exhausta (17~).Every coset 0 Ep~(F) with KflOK’�çb

has then an element y E 0 with ‘yK’ fl K’ * ~. Hence p~,(F) acts disconti-

nuously. U

The obvious spaces V0 to which Lemma 2.1 can be appliedare the spaces

generatedby the translationsin F:

I w~
IR~ wEVj EF.

01

Returning to the situation describedin Theorem 1.3 we have fixed a type

of G ( GL(JT) and we are consideringG-linear groups F ( Aff(V). Let
V0 ( V bea subspacewith

A(F) ~ StabGL(V)(VO).

For inductive purposesit is then necessaryto describesomepropertiesof the

group

StabG(VO)(G.
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Or rather its image in GL(V/V
0). For this we needa theoremof Morozov

andPlatonov [20, 21]. Seealso [6].

PROPOSITION 2.2. Let G be a linear algebraic reductivegroup over JR. Let

H ( C be a Zariski closedsubgroup Assumethat the unipotentradical of H
is nontrivial Then the normalizer NG (11) of H in C is containedin a (proper)

parabolicsubgroupof G

The following is an obviousconsequenceof theaboveresult.

COROLLARY 2.3. Let G be a linear reductive algebraic group over JR with

rk~G ~ 1. If H is a Zariski closedsubgroup then only the following two

casesare possible.
(i) The connectedcomponentofH is reductive,with rk~H( 1.

(ii) NG(H) is a subgroupof a group P which is isomorphicto a semidirect

product P Sx K where S is solubleand K is compact.

Proof: The parabolicsubgroupsof G are of the typementionedin (ii).

The following proves for some groups C that a G-linear group is virtually

polycyclic. The resultis containedin Raghunathan[22].

LEMMA 2.4. Let H be a connectedLie-group which is a semidirectproduct

H=S~K

of a compactgroup K over a soluble normal group S. Then any discretesub-

group of H is virtually polycyclic.

Anotherresult neededis the following specialcaseof a theoremby Auslander
[2].

PROPOSITION 2.5. Let V be a finite dimensionalvectorspace.F ( Aff(V)

a discretesubgroup.Then

is soluble.

Here H
0 stands for the connectedcomponentof the topological closure

of the subgroup H’( GL(V). If C is a linear semisimpleLie-groupwith finitely
many connectedcomponentsand sothat rk~C = 1, we put
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XG =

where K ‘~ C° is a maximal compactsubgroup.XG is called the symmetric

spaceattachedto G. It is homeomorphicto JR’1 for somed. For the almost
JR-simplerealgroupswe list the dimensionsof XG from [14]:

C dimXG

O(n,1) n
U(n, 1) 2n
Sp(n, 1) 4n

F
4II 16

We prove:

PROPOSITION 2.6. Let C be a semisimplereal Lie-group with finitely many

connectedcomponentsand of real rank 1. Assumefurther that G is not iso-

genousto an almostdirectproduct K x 0(2, 1) where K is compact.Let

p : C -~.GL(V)

bea faithful representation(i.e. kerp = 1). Then

dim V> dim XG.

Proof C is an almostdirect product C = K x H, where H is almostJR-simple

with rkm(H) = I and K is compact. p definesa faithful representationof
H and hence a nontrivial representationof the complexification ic of the

Lie algebraof H. Note that is simpleexcept for H isogenousto 0(3, 1),
in this case = ~ ~ 5l2~~~).From the tablesin [25] we seewhich irredu-
cible representationsof are real. On the otherhand we get from Weyls

dimension formula [15] a lower bound for the minimal dimension of an irre-
ducible representationof ~ The combinationgives the following table of
minimal dimensionsof irfeducible nontrivial modules V for the variousgroups

H.

H isogenousto dim V ~

O(n,l) n+1 for fl*2
U(n,l) 2n+2
Sp(n,l) 4n+4
F411 26
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Note that Spin(2, 1) has a two-dimensionalrepresentationvia the excep-

tional isomorphism

Spin(2,1)~SL2(R) U

Proof of the Theorem1.3. As mentionedbeforewe proceedby induction on

the dimensionof V. The result is known in dimensions1, 2, 3. See[9]. In fact
in dimensions1 and 2 our claim is moreor less obvious.

Let now V be an n ~ 3 dimensional vectorspaceand F ‘~ Aff(V) a sub-

group that acts discontinuously and quasitransitively on a( V). If the group
of translations T~ is nontrivial then we use Lemma 2.1, Corollary 2.3, Lemma

2.4 and the induction hypothesisto finish. We assumenow that Tr = (1)

Wenow distinguishtwo cases:

1) X(F) is discrete in G.

Since F is a finitely generatedlinear group,we may replace F by a torsion-

free subgroup of finite index (Selbergstheorem [22]). Then F acts without
fixed points on a(V). We may by going to a subgroupof finite index insure

that F actsorientationpreservingly.It follows that

F’\a (V)

is a compactorientablemanifold of dimensionn = dim V. 13y Poincare-duality

weseethat
H’

2(F, IR) H’~(ir
1(F’\a(V)),lR) H’~(F’\a(V),IR) JR.

On the otherhand A(F) ~ C being discreteand torsionfreeit is well known
that A(F) F acts discontinuouslyandwithout fixed points on XG. By Pro-

position 2.6 F is also the fundamentalgroupof the manifold

F’\XG

which is of dimension < n. This implies that the cohomologicaldimension
of F is strictly less than n. This is a contradiction.Note that sincethe dimen-

sion of V is ~ 3 theexceptionalcasein Proposition2.6 cannotoccur.

2) X(F’) is notdiscrete

Thenthe group

is a nontrivial connectedsolvablegroup by Auslanderstheorem(2.5). We write
S for its Zariski-closure. If S containsunipotentelements,that is if the uni-
potent radical of S is nontrivial then by Corollary 2.3 and Lemma 2.4 we are

finished.
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If ~ containsno unipotentelementsit is a torus. Thenthe certralizer CG(S)

of S in C hasfinite index in thenormalizerNG(5). Let F’0 bea subgroupof finite

index in F sothat F0 centralizesS. Put

F’1 =A’(S)flF’0~F’

Since F’0 centralizesA(F’1) the commutator

[F’1, F’0]

is containedin the group of translations T~.So F1 lies in the centreof F’0.
Takea nontrivial element

7E F’1.

Let V7 bethe eigenspacefor the eigenvalue1 of A(y).

V ={vE VI(1~—A(’y)) v=0}~ V.

The space is left invariantby X(F’0) since ‘y is centralin F’0. We prove
now:

Thereis a uniquecoset V7 + z sothat theaffine subspace

V +z

(*)

is left invariantby ~.

This follows easily from the fact that A(’y) is semisimpleandhence1 — A(y)
is invertible on V/V.

By conjugatingthe group F0 we mayassumethatz 0. Thegroup F’0 then
also leavesinvariant the affine spacea (V). It follows that F’0 acts disconti-

nuosly and quasitransitively on a (V).
Wereplace now F’0 by a torsionfreesubgroupof finite index.The manifolds

F0\a(V)and F0\a(V)

are compact and havedistinct dimensions.Since F’0 is the fundamental group
of both, the argumentusing the cohomological dimension of F’0 produces

a contradiction.

Proofof Corollary 1.5. We may assumethat G ~ GL( V) is an algebraic group

since the result is clearly true of C is not algebraic.We havealreadyproved
that F is virtually polycyclic. Let L~ be a torsionfree soluble subgroup of finite
index in F. L~is an extensionof an abeliankernel by A(E~).We write X(t~)
for the Zariski closureof A ~ in C. A(L~) is eithera torusin which case A(t~~)
is abelianor containsunipotentelements.If A(L~) containsunipotentelements
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then X(~) is containedin a parabolic P subgroupof C (Proposition2.2).
P is an almost semidirectproduct: P = K x S where K is compactand S

is a split extension S = U ~ JR where U is unipotent of class ~ 2. We now

usethe fact that the imageof X(A) in K/F (F = K fl S) is abelian.

3. UNIPOTENT SIMPLY TRANSiTIVE GROUPS OF AFFINE LORENTZ-
MOTIONS

In this section we shall analyseunipotentgroups of affine Lorentz-motions
that act simply transitively on affine space. We start off by constructingsome

examples.
Let n ~ 1 be an integer. We fix an11— 1-dimensionalreal vector spacewith

basis W = ~ — 1 On the vectorspace

JR xWxlR

we considerthe quadraticform

q(x, w, j’) = 2xy + ww~

which is of signature(n, 1). As in theintroductionwe define

O(n, 1) = 0(q, IR)

O(n— 1) = {o : W-~WIG is linearand nu’ = E~1}.

g w~
E(n, l)= gEO(n,I), wEIRxWxIR

01

1 —v
2

Un(n, I) = 0 E yEW ~0(n, 1).
li—I

0 0

A —u — -A~ vv~

P(n,l)=
0 A

1 uEO(n— I)

0 0

Here E 1 is the (n — 1) x (n — 1) identity matrix.

Un(n, 1) is a maximal unipotentsubgroupof O(n, 1). P(n, I) is a minimal

parabolicsubgroupof O(n, 1). For U, u E W, r, s E JR we introducethe follow-
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ing elementsof E(n, 1) which havetheir linear partsin Un(n, 1).

1 —v —~vv~r
2

0 £ Vt itt
L(v; r, u, s) : = P7 1 EE(n, 1).

0 0 1 s

0 0 0 1

Thefollowingis a simplecomputation.

LEMMA 3.1. Let W = ~ ~ be an n — 1 dimensionalreal vectorspace,u, u’,
v, v’ E W; r, s, r’~s’ E JR. Then

(i) L(v; r, u, s) . L(v’; r’, U’, s’) =

Lv+u’;r+r’—uu’t——s’vut,u+u’+s’v,s+s’
2

(ii) L(v;r,u,s)1 =L(_v;_r_vut+_svvt,_u+sv~_s),

(iii) LL(v; r, u, s), L(v’; r’, u’, s’)]

1 1
=L 0;v~ut_vult+ — ~y’y’t —

2 2

Wenormalisecommutatorsof elementsg, h of a group G as:

[g,h] =ghg~/2~1

Lemma 3.1 will often be usedwithout further mentionin the proofsto follow.

Forelementsw E W and s E JR we also define:

g (s) : = L sw; — — s3wwt, — w, s
W 6 2

We havedefine g (s) to satisfy:

0 —w 0 0

0 0 wt 0
~ (s)= exp s

0 0 0 1

0 0 0 0
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This shows that the g (s) define a unipotent1-parametersubgroup.We are

readyto introduceourgroups.

DEFINITION 3.2. Let W = lR~’~ be ann — I-dimensionalvectorspace.We also

fix a linearmap

W-+ W

satisfying ~ = 0 andan element

wE W

G( ~i) := {L( i,li(u); r, it, 0) huEW, rE JR~t

C(~,1i,w) : = {C(i~1i),G(~,1i) g(s)~sElR}.

The following elementarypropositiondescribesthe group theoreticstructure

of the G(i,ti,w).

PROPOSITION 3.3. Let W = JRfl - be an n — 1-dimensionalreal vectorspace,

W-+ W a linear map.with ip
2 = 0 and wE W. Thenwehave

(i) G(i~i)andG(~Ji,w)are unipotentsubgroupsof E(n, I).

(ii) C(~1i)is normalin G(i,t’, w).
(iii) Thereis an exactdiagramofgroups

0—~lR-~C(~)-~W-÷0

G(i,L’, w)

JR

0

where 0(r) = L(0;r, 0,0).

(iv) 0(JR) is central in C(i1i, w).

The following explainwhy we haveintroducedthe G(~i,w).

PROPOSITION 3.4. Let W = IR’7 - be an n — 1-dimensionalreal vector space

~í :W—~Walinearmapwith ~2 =0 and wEW. Then
(i) G(,li, w) acts simply transitively on a(IR x W x IR).
(ii) every subgroup U of E(n, 1) with A(U) ~ Un(n, 1) thatacts simply
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transitivelyon a(IR x W x IR) is equalto oneofthe G(~i,w).
(iii) every unipotent subgroupof E(n, 1) that acts simply transitively on

a(R x W x IR) is E(n, 1) con/ugateto a group G( ~i, w).

Proof 0
(i) Followssince G(I,1I, w) is transitiveandthestabiliserof 1 ~5 trivial.

(ii) We only sketcha proof here. For a point P E a(IR x W x IR) thereis

a unique ~ E U with

0

i

Writing down the conditionsfor the possible 7 to havea fixed point, we

arriveat therequiredresult.
(iii) Any unipotent subgroup of O(n, I) is conjugate to a subgroupof

Un(n, 1). •

The classificationof the G(~i,w) up to conjugacy in E(n, 1) is described

by:

PROPOSITION3.5. Let W = JR’
7 1 be an n — 1-dimensionalreal vectorspace

I~/,~/’:W-+Wtwolinearmapswith~/i2=~Ji’2=0andw,w’EW:Thenthe
followingare equivalent

(i) there is ag EE(n, 1) with

—1 ‘

gG(~,1i,w)g =G(i,L’,w)
(ii) there isa A E IR* anda a EO(n.—1) with

~‘=AaJia’, A2wat=w~.

Proof Observethat if h E Un(n, 1) is nontrivialand g EO(n, 1) is anelement

with ghg~E Un(n, 1) thenit follows that g E P(n, I).

After this apply Lemma3.6. .

LEMMA 3.6. Let W = - 1 be an n — 1-dimensional real vector space

,li : W -÷W a linear map and w E W. Let furthermore

A —v — _A_lvvt r
2

0 a A~1av~
g=

0 0 A’ s
0 0 0 1
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bean elementfrom P(n, I). Then:

gC(I.,b, iv)g~= C(Xai4ia_1,X2wa~).

Lemma 3.6 is proved by a sirnnle comnutation
To classify the C(i/i, w) up to isomorphismwe introducethe Lie algebras

of thesegroups.

DEFINITION 3.7. Let L be a field and let W = L’7 - 1 be ann — 1-dimensional

L-vectorspace.For an endornorph.ism ~ . W-+W and an element w E W we

introducethe following producton thevectorspace

Lx WxL

[(r, v, s), (r’, v’, s’~1=

= (l~1i(v~)vt— ~(V)v’t — swv~t+ s’wv~,si,Li(v’) — s’qi(u), 0).

We call theso definedalgebra~ ~(ui, w).

The product [ , ] on g ~ (i~, w) is antisymmetric,it is a Lie algebrastructure

if andonly if the map

Wx W-+L

(u, v) -+ u’2(v) ‘ V’

is symmetric. This is always so in the caseswhich interest us here (1112 = 0).

If L=JR and u,L’ :W-+W isanendomorphisrnwith ~2O andifwEV

then g L~~’w) is the Lie algebraof G(11i, w). For this considerthe representa-
tion

0 :~(11i,w)-~End(1RxWxIRxIR)

0 —111(U)_sw 0 r

0 0 i,1j(u)t + swt u~
O : (r, U, s) -÷

0 0 0 S

0 0 0 0
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Wehave

exp(O(g~(uJi,w)) = G(iL’. w).

Overany field L thealgebras~ (11.’, w) canbeclassifiedup to L-isomorphism.
Wegive only a partialanswerhere.

DEFINITION 3.8. Let n ~‘ I, k beintegerswith 0 (k ((n — 1)/2. For a field
L let W bea vectorspaceof dimensionn — 1 with basis

eI,fl,...,ek,fek
n—1~

Let be theendomorphismof W definedby

~k(ef)=0, ~bk (f~)=e1, i=I,...,k.

For any 0 (k ( (n — 1 )/2 we definethe Lie-algebra,

+ l,k)=;L(
41k,O)

for k*(n—l)/2 put:

L

It is easy to prove the following classification result. See also Proposition

6.2.

PROPOSITION 3.9. Let K be a field and W = K’7 - 1 an n — 1-dimensional

K-vectorspace.Let ~i : W —~ W be an endomorphismand w E W. Thenthe
Lie algebra ~~ (ul’, w) is isomorphic to exactly one of the above defined
.1t~(n+l,k).

In table 1 we have computeda multiplication table for the Lie algebras
+ I, k). Proposition 3.9 and Proposition3.4 then imply Theorem1.8.
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Table 1

+ I,k) ~ -4- 1k) for

[r,~l= 0 0

(r.e~l= 0 —62k+Ijt alt I

lrJ,l= _e~

le,,e. = 0 0 all I, /

fr
1.1l= ~ .~ ~ I ‘j~A

11.11= 0 0 I~i,/<k

l~,e1l= 0 0 all I

0 0 I~j~k

I for i=j
=

‘~ 0 for i~j

4. SIMPLY TRANSITIVE GROUPS OF EUCLIDEAN MOTIONS

We shall describehere the simply transitive groupsof eucideanmotions in

a way which will be convenientfor usin the next chapter.
Let V~=IR’7 bea realvectorspacewith basis.On the chosenbasiswe consider

the quadraticform

q=x
2+... +x2.
1 ‘7

We write 0(n) for its orthogonalgroup.We let furthermore

g
gEO(n),VE V

0 1

be the groupof euclideanmotionson a(V).
We shall now define some subgroupsof ~(n) which act simply transitively

on a(V).

DEFINITION 4.1. Let 0 ‘(d <n ~ 1 be integers.Weput

Vd{(xl x)Il.d},

e: Vd —*0(d)

be a continuoushomomorphism with discretekernel.We definethegroup
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e(u) 0 w

~(e,d)= 0 E u~ uEV~,wEV”

0 0 1

The set t(e, d) is a subgroupof 4~(n).Notethat for an e to exist it is neces-

sary that [(n—d)/2]~d. Here [x] is the biggestintegersmaller than the real

numberx.

PROPOSITION 4.3. Let 0 ( d, d’ <n > 0 be integers.

(i) Thegroups~(c, d) for homomorphisms

e :Vd-~*O(d)

act simpl.y transitivelyon a(V).
(ii) If g ~�, d), ~(e’, d’) are two groupsattachedto homomorphismswith

discretekernels

e : Vd -+0(d), �‘ : Vd. ~‘°(‘~~

then~(e, d) is~(n) conjugateto ~(e’, d’) if andonly if:

d=d’ and gEO(d),hEO(n—d)

with e’(uh ‘) = ge(u)g~

The proof of Proposition 4.2 is easy.The following result shows that the

~ d) are essentiallyall simply transitivesubgroupsof ~(n).

PROPOSITION 4.3: Let n ~i’ 0 bean integer. Supposethat H ~(g(n) isa group
that acts simpiy transitively on affine space.Then there is an 0 ~ d < n and a
homomorphismwit/i discretekernel e : Vd -+ 0(d) so that H is conjugate

in ~(,i) to ~(c, d).

To proveProposition4.3 we need:

LEMMA 4.4. Let n ~‘ 0 be an integer. Supposethat H ‘(J~n)isa commutativp
group that acts simply transitively on affine space. Then H = TC(fl), that is

H is thefull groupoftranslations.

Proof We proceedby induction on n. The resultis claar for n = I. Suppose
now that n ~ 2. The group H acts by conjugationon Te(fl) and henceon
V = V~). It leavesinvariant the spacesV~, andV~,’. Note that since H is

commutative,H actstrivially on V~,.
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The group X(H) is a conimutative connectedsubgroupof 0(n), hencewe

have
J~n

dim(A(H)) ( I —

[2

It follows that

dim(V~,1)<,~

The stabilizer

H1 = stabH(a(V~))

actssimply transitively ona(V,~~).The result follows by induction. U

Proof of Proposition 4.2. The group H acts by conjugation on the space

of all translations TE(fl) and hence on V = VC(fl). It leavesthe spacesV~

and V~’ invariant.We put

H1 = stabH(a(VH)).

H1 actssimply transitively on a(V~’). By a theoremof Auslander[I] H1

is a connectedsolublegroup. Hence A(H1) ~ 0(n) is commutative.The kernel

H2 = ker(X : H1 —*0(n))

is subgroupof translationsin V~1, hence H2 is discrete. H2 actsby conjuga-

tion on the discretegroup H2. Since X(H1) is compact H1 hasto centralize
H2. Fora given g E H1 we considerthe map

[g, ]:H1—*H2

[g, ]:/i —* [g, h].

The commutatorsubgroupof H1 being central, the map [g, ] is a homo-

morphism of the connectedgroup H, into the discretegroup H2. It follows

that H1 is commutative. By Lemma 4.3 H1 acts by translationson a(V~).
We may considertheresultinghomomorphism

e: V~’-+H1—*0(n),

whereanelementu is mappedto thecorrespondingtranslationin H1.

The image of e stabilizes V~’and leavesVJ~’pointwisefixed. Finally we

conjugatethe pair of subspacesV° and V~ by an orthogonalmatrix into

thestandardpair. .
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The aboveshows that the groups H ( ~‘(n) that act simply transitively on

affine spaceareall split extensions

0 -* -* H JRb

with a + b = n and JRb acts orthogonallyon JR’2. Conversely,it is clear

that every split extensionof this type can be embedeedinto ~(n) as a simply
transitivegroupof euclideanmotions.

5. NONUNIPOTENT SIMPLY TRANSITIVE GROUPS OF AFFINE LORENTZ-
MOTIONS

Here we shall describethe simply transitive groupsof affine Lorentz-motions
which contain nonunipotentelements. To do this we introducethe following
subgroupsof P(n, 1). Here W = lR’7 ~ is an (n — 1)-dimensionalrealvector

spacewith chosenbasis.

A 0 0

D(n, 1)= 0 a 0 IAEJR*, aEO(n— I)

0 0 ?C’

I —v ——vu’
2

~(n, l)= 0 a cv’ oE0(n— 1), yEW

0 0 1

PROPOSITION 5.1. Let n ~ 1 beaninteger.
(i) Let H ( E(n, I) be a subgroupthat acts simply transitively on affine

space. Then H is E(n, 1) conjugateto a group H
1 with A(H1) ( P(n, I).

(ii) Let H ( E(n, 1) be a subgroupthat acts simply transitively on affine
space.If H satisfies A(H) ( P(n, 1), then either A(’H) ( ~b(n,1) or ?~IH) is
P(n, 1) conjugateto a subgroupof D(n, 1).

Proof

(i) Since H is a solublegroup the Zariski closure X(H) of A(I1) is also so-

luble. It is then conjugateto a subgroupof the minimal parabolic P(n, 1) of
O(n, I)

(ii) Let U be the unipotentradical of the Zariski closureof H. By [IJ U

also acts simply transitively on affine space. So by proposition3.4 it is equal
to a G(11i, w). H nornializes U and hence by lemma 3.6 it follows that
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H ‘(~ (n, I), unless ~i 0 and w = 0. This being the case X(H) is a torus
andassuch P(n, 1)-conjugateto a subgroupof D(n, 1).

We shall now separatelydiscussthe two cases (A(H) ( p(n, 1) or D(n, 1))

which havecomeup in Proposition5.1.

A) Croupswith A(H)~<D(n,1)

We keep herethe conventionsof section4 concerningthe coordinatesubspaces
Wd and Wd of thevectorspace W = -

DEFINITION 5.2. Let 0 ( d <n — 1 ~‘ 0 be integers,and W = a real

vectorspace.Let

JR x Wd x JR -* 0(d)

be a homomorphismso that 1? restricted to (0, Wd, 0) has discretekernel.

Define

1 0 00 r

0 i~(r,w,s) 0 0 i/

D1(d,~1)_ 0 0 E 0 w
t Ir,sEJR,~E~’d,vEW’~

0 0 0 1 s

0 0 00 1

Let 0 ( d
2 (d1 <n —1 ~ 1 be integers,and W= JR’~’ arealvector-

space.Let

p : Wd —~0(d1),

be a homomorphismwith discrete kernel so that the eigenspacefor the trivial
characterof the torus

p(w) 0

hwEwd ~0(n—l)

0 E
is Wd. Let furthermore

r :Wd —*JR

be a homomorphism.Define
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er((~4~*,wl))O 0 0 0 r

o 0 0

O 0 0 w
2

o 0 0 1 0 wt~ r,sEJR,
wEW

o 0 0 0 eT~~,,~(i))s
- (w2.w1)EW1,,

o 0 0 0 0 1 yEW
1 -

Thefollowing is the reasonfor the abovedefinitions.

PROPOSITION5.3. Let n ~‘ 1 beaninteger.
(i) Thesets D

1 (d, i~) and D2(d1, p, r) attachedto data d, m~and d1 , p, r

as in definition 5.2 are subgroupsof E(n, 1) that act simply transitively on
n + 1-dimensionalaffine space.

(ii) Let n ~‘ 1 be an integer. Let H ( E(n, 1) bea subgroupthatactssimply
transitively on affine space and that satisfies A(H) ~<D(n,1). Then H is
E(n, 1)-conjugateto oneof the groups D1(d, r~) or D2(d1, p. r) with appro-

priatedata.

Proof The group H may be parametrizedas

0 0 r

0 a(r,w,s) 0 w
t

Ir,5EIR,wEW
0 0 eT(t,~~,)s
0 0 0 1

with functions

T :IRxWxIR—*IR

a :lRx Wx1R-*O(n— 1).

r, a have to satisfy certain functional equationscoming from the fact that
H is a group. Theseequationstogetherwith the fixed point freenessof H imply

r(r, w, s) = r(0, wa(r, 0, s), 0). This implies that H is the product of the fol-
lowing two of its subgroups:

1 0 Or

0 a(r,0,s) 0 0
hr,sEJR

0 0 1 s

0 0 0 1
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e~°’~’’°~ 0 0 0

0 a(0,w, 0) 0
H2= o e_Tw,O) ~ IWEW

0 0 0 1

H2 acts as a simply transitivegroupof eucideanmotions on a(O x W x 0) (

~ a(JR x W x lR). Weuse section 4 to find d andthe hornomoprhism � with

discretekernel.
Assume then r(0, w, 0) = 0 for all wE W. The computationof the commu-

tators ~ H2] showsthat H hasto be conjugateto agroupof type D1(d, ui).
If 1 (0, w, 0) * 0 for some w E JV, the computationof the commutators

[H1, H2] showsthat a(r, 0, s) = 1 for all r, s E JR. After this thesameanalysis

of commutatorsshows that H is conjugateto a groupof type D2(d1, p, r).
Note that thereis an element w E W so that a(O, w, 0) — — 1 is invertible

on the orthogonal complementof the eigenspaceof the trivial characterof the
torus

{a(0,w,0)hwEW}. U

Note that there is a certain obvious overlap amongs the groups of type
D1(d, ‘ri) and D2(d1, p, r). We have not included the classificationof the
E(n, 1) conjugacyclassesof the abovegroups.This canbe done by elementary

meansbut is rather messyandincludesthe introductionof finer invariants(such
as the eigenspaces)of thehomomorphisms� and 77, T.

Note that the Lie groups H of type D1 (d, r~)areall split extensions

0 —* lR’2 -+ H —* JRb

where b > 2 and 1R
1’ acts on lR’2 througha homomorphism � : JRb —*0(a)

such that the dimension of the connectedcomponentof the kernel of � does
not exceed2. The groups H of type D

2(d1 , p, r) are split extension

0 —* IRa —* H IRb -+ ü

where a > 2 and lR” actson JR’~througha homomorphism
e : IR” .÷ JR* xO(a — 2) —* GLa(IR) where lR* actstrivially apartfrom 1-dimen-

sionaleigenspacesfor the identical characterandits inverse.

All thesegroupscan easily be classifiedup to isoniorphism.

B) Groups with X(H) ~ P(n, 1)

We introduce the following subspacesof our real vectorspace JR x W x IR:
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u={(r,0,0)jrElR}, i~={(r,w,0)IrE1R,wEW},

togetherwith the groups:

E v’ g
R= jvEu,R= gEP(n,l),vEü

0 1 0 1

We startoff with a group H <E(n, 1) that acts simply transitivelyon affine

spaceamid satisfies X(H) ( P(n, I). Note that the groups H0 = H fl .i~is normal
in H andsatisfies H /I1~ JR.

We write H for the Zariski-closureof H and U11 for its unipotentradical.

By a theoremof Auslander U11 also acts simply transitively on affine space.
Since X(U11) ‘( Un(n, I) by section3 we find U11 = G(4,IIH, w11) for appro-

priate 11111 and wH. The following gives a normal form for the subgroups
H0 ‘~ H which areof codimensionI:

PROPOSITION 5.4. Let H be a group with H ~ E(n, 1) that acts simply tran-
sitively on affine space and satisfies X(JI) ~ P(n, 1). H can be conjugated
by an elementof E(n, 1) so that JI~= H fl R is ofoneof the following

shapes

(a)

1 0 — ~(w2, 74’3) 0 — — ~(w2, w3) . ~‘~‘2’ w3)’ r

0 c(w3) 0 0 0

0 0 E 0 i,li(w2,w3)’ w~

O 0 0 E 0 wç

O 0 0 0 I 0

O 0 0 0 0

w1 E W’~’, (w2, w3) E Wd , w E Wd, r E IR.}

Here � : Wd —*0(d1) is a homomorphism with discrete kernel and
Wd -+ Wd ~fl W’~’ is a homomorphismwith 11i2 = 0, for appropriate

integers d1,d2’ with d1 ~ d2.
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(b)

1 0 00 r

O e(w
2,r) 0 0 w~j

0 0 E 0 wf~ !wlEWd,w2EWQ’l, rElR

0 0 0 1 0

O 0 00 1

Here � : JR x —*0(d1) is a homomorphismand d1 is an appropriate

integer.

Proof We define H1 = (H fl G(i~11))°.H1 is a connectedgrouphencethere
is a subvectorspaceV ( W so that

— ~(v) — — ~(v)~(v)’ r

O E ~(V)r yr
H1R IrEIR,VEV

0 0 1 0

O 0 0 1

Thegroup

H2 = stabH(a(V
1fl ii))

actssimply transitively ona (V’ fl ii) andsatisfies

[H
2, H2] ‘(R.

An analysis analogousto that in section 3 togetherwith some commutator

computationsfinishesthe result. .

Note that groupsof type (a), (b) in the abovepropositionall act simply traIl-

sitively on the affine subspacea(W).

Proofof Theorem1.9. This result cannow be readof from the normal forms

in Proposition 5.3 and 5.4. Under (ii) we have given an internal description

of the groups D1(d, 77). (iii) correspondsto the groups D2(d, p, r). (iv), (v)
correspondsto the cases(a), (b) in Proposition5.4 respectively.Herea commuta-

tor computationshowshow thequotient H/H0 = JR actson H0.
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6. GROUPS ACTING DISCONTINUOUSLY AND QUASITRANSITIVELY

ON LORENTZ SPACE

We shall prove here our results on the abstractcommensurabilityclassesof

groups that act discontinuously and quasitransitively on Lorentz space. The
theoremof Fried and Goldman (1.5) reducesthis problemto the study of the

abstractcommensurabilityclassesof latticesin groupsof affine Lorentztransfor-
mationsthat actsimply transitively on affine space.

We first treatthe caseof unipotentgroups.Let U ~ E(n, 1) be a unipotent
groups actingsimply transitively on affine spaceand let qj be its Lie algebra.

Let F ~ U be a subgroupthat actsdiscontinuouslyand quasitransitivelyon
affine space.We write

U

for the Malcev completionof F. MQ (F) can be describedas the radicablehull
of F,[l6], [24]. Weput

JIQ(F) : = exp~(MQ(F)).

J42(F) is a rationalLie subalgebraof QI with the propertythat the map

IR®Q JIQ(r)-+Q1

is an isomorphism.That is ‘W~(F) is a Q-form of therealLie algebraQi.

Givena Lie algebra..# over Q andan isomorphismof Lie algebras

we may constructa group F ~ U in the following way. Choose,as is always

possible,a Z-latticeA~ ~ A! invariantunderthe bracketanddefine

F = (exp(O(A!~))

to be the group generatedby the set exp(O(A(~)). F actsdiscontinuouslyand
quasitransitively on affine spaceand has the property .#Q(F) = O(4Y). The

set exp(8(A!7.~)) is enclosedas

F1 ~<exp(O(.//ç))<~F2

betweenthe groups F1, F2 that act discontinuouslyand quasitransitivelyon

affine spaceand satisfy F2/F1 <oc, [19].
It is well known that two torsionfree finitely generatednilpotent groups

are abstractlycommensurableif and only if the Lie algebras ..%‘~(F1), .4Y~(F1)
of their rational Malcev completionsare isomorphic,[13]. So, to describethe

abstractcommensurabilityclassesof the groups F wehaveto find the Q-forms
of the real Lie algebras ~ (n + 1, k) and ~

2(n + 1, k). To do this we
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introducea classof Lie algebraswhich might beof independentinterest.

DEFINITION 6.1. Let L be a field and let k, m ~ 0 beintegers.Let

E=Lk, F=L”, G=L
m

be L-vectorspacesof the indicateddimensions.We write e
1, f,, g. for the cano-

nical basis elementsof E, F, G respectivelyand defmethe linearisomorphism

:F—*E; :f1=e,, i=l k.

Put

W = E c F e G.

Let

~E +~oF+SOG :W=EeFeG—*L

bea linear map.
Let furthermore S E Sym~(L)be a symmetric k x k matrix with entries

in L anddet( ) * 0. On the L vectorspaceof dimension 2k + in + 2

Le WeL

we definethe product

[(r, u, s),(r’, u’, s’)] =

= (f’S e’ — fse” + s’~(u)— s~(u’),s’f— sf’, 0)

where

r,s,r’,s’EL, u=e +f+g, u’=e’+f’+g’E W.

We write ~L (k, n~,p, S) for the vectorspaceL e W ~ L with the product

[ ,

~L (k, m, p, S) is alwaysanilpotent Lie algebraof nilpotencyclass< 3.. Writing
z = (1, 0, 0) and r = (0,0, I), we find the following defining relationsfor

~L (k, m, p, (s11)).

[T, e~]= ~E~’i~ z i = 1

i=1,...,k,

(*) [T,g.]=—p~(g,).z i=l

[e.,e]=0, [f~,f]=0

[e,,g.I=0, [f,,g.]=0 i=1,...,k;j=l
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[g,,g1]=O, 1,1= 1,.. .,m,

[e.,f.]=s..-z i,j1,...,k,

Note that

~ ~‘) ~ in, p, Ek)

where ~ (~,1i,w) is one of the Lie algebrasdefinedin section 3 and k, in, p
are appropriatelychosen.Similarly

+ l,k, S) = ~Q(k, n — 1 — 2k, p1 2’

for appropriate~1 ,2~

PROPOSITION 6.2. Let L be a field and let ~L(k, m, ‘p, 5) and ~L (k’, m’, p’. S’)
be two of the Lie algebras defined in 6.1. Then tile following are equivalent:

(~)~L (k, in, p, 5) is isomorphicto ~ ~_ (k’, ill’, ‘p’, 5’).
(ii) k = k’, in = iim’, and there are XE GLk(L) and YE GLm(L), and

aEL\{0} so that:

S’=aXSX’, ‘p~=’p~.Y.

Proof The proof is obtainedby writing down a linear isomprphism 0 on
the naturalbasisgiven in definition 6.1. 0 is a Lie algebraisomorphismif certain
relationsbetweenthe entries of 0 hold. An elementaryanalysisof theserela-

tions impliesproposition6.2.

Proposition6.2 can be usedto classify the Lie algebras ~L(k, in, ‘p. S). For
the linear map ‘p we haveonly to consider two possibilities.

Next, we have to classify symmetric nondegeneratek x k matrices S up to
the equivalencerelation:

S’ —S ~ 5’ = a - XSX
1 with aE L*, XE GLk(L).

Over the field L of realnumber S and 5’ are equivalentif they have the

same or oppositesignatures.Two symmetric matrices 5, 5’ E Symk(Q) can

only be equivalent over L = Q if they havethe sameor oppositesignatures.
We note here the following obvious consequenceof the theoremof Hasseand

Minkowski.

PROPOSITION6.3. Let k ~ 1 bean integerand let 5, 5’ E SVink(Q) bepositive
definitesyinm etric matrices. Thefolioit’ing are equivalent

(i) S’~—Sover Q,
(ii) ~ a E Q wit/i a >0 sue/ithat
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(ak . det5) (detS’) 1 E Q*2 and
k(k —1)

det(S),a a,a 2
C (S)~ ) = C (S’) for all primes p.

p P1 P

Here C (5) and a, b are the usualHassesymbolsat p.
p p

PROPOSITION 6.4. Let K ~ L befields. Let ~ ~ (k, in, p,S) be a Lie algebra
as defined in 6.1. Let .11 ~ ~L(k, ni, p, 5) be a K-Lie algebraso that thenatural
map

L ®~ ~‘~L~1” m, p, 5)

is an isomorphism.Then there is a K-linear map ‘p’ and an 5’ E S.Yflik(K) so
that

)r~~K~’ ~ ~p’,5’)

asK - Liealgebras.

Proof The result is clear for k = 0. So we assumethat k ~ 1. We choose

in ~L (k, in, p, 5) its natural basis z, e~,[, g
1, r which satisfy the relations

(i’). We shall constructnow in Jr a K-basiswhich also satisfiesour relations(*).

We have

LJr, [Jr.Jr] = K. 2

with 2 = irz for some ir EL. This follows since the Lie algebra~L(k, m, p, S)
has. a similar property.Furthermore the coin mutator algebra

Lr,Jr]

has dimension k + 1 and is contained in L . (z, ~ , e,~).Wechoose a
basis 2, ê1~..., e~of [Jr,Jr]. Theelements ê1 satisfy [P,,,ê1] = 0 for i, j =

=1 k since

[Jr,Jr], [Jr,Jr]] = 0.

The center of the Lie algebraJr /[Jr,Jr],Jr] hasdimension k + in and
its preimage in Jr is containedin L . (z, e~,. . . , ~ g1 ~ We add

elementsto obtain a basis:

z,ê1

of this space. Clearly the ~ g1 all commutewith eachother.We choose

= i~)0+ 1T01’
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~1 ~ +7r
1r

=

1~’k + ~kT

with ~r.E L, ~ * 0, ~ E L (z, e
1, . . , ek, g1, . .. ,g,,~ ) so that 2, ê, .. . , e,(.

,f~ ~ g,,, , i is a basisof Jr.

By a simplecomputationwe find

[f~ f] = ir.rr~’([1, .1]) — ir. iç’ ([i, .i~D.

Thisshows that the [f, f1 I,. . . , [i~,~ are L-linearlyindependentand that
iriç

1EKfori=l k.
Wechangeour basisso that = .. . = = 0 andso that

(**) [~,j~]=—e.+X,2; i=l k

with A. E K.

We now showhow to enforce [f. J,,] = 0 for i, j = 1, . . . ,k. Considerthe

following bilinearmap which is inducedby the commutator

B :[Jr,Jr]/k- 2xF/E—*kI

Here F = K (~,ê
1,.. . , ~ ,f~) and E = K (1, ~,. .. ,e~).Bis

nondegenerate,since this is true over L. It follows that we can changethe

by elementsfrom £ so that they satisfy [f, .I~]= 0 for i, j = 1, . . . , k. We
then change the so that (**) is satisfied.Note that a simple computation
usingthe Jacobiidentity showsthat the matrix (s11) defmedby

[ê,~] =~2

is symmetric.

Proof of Theorems. 1.10, 1.11, 1.14, 1.17. Let F ~ E(n, I) be a subgroup

that acts discontinuouslyand quasitransitivelyon affine space.Let H be its
kristallographichull (Theorem 1.5). H ~ E(n, 1) acts simply transitively on
affine spaceand A = H fl F is of finite index in F. H canbe conjugatedto one

of the typesof groupsdescribedin sections3 and5.

A) H is unipotent

By section 3 H is conjugateto G(~’i,w) for suitable i,ti and ii’. The Lie

algebraA!~(A) is isomorphic over Q to some Lie algebra q ~(k, m, ‘p, 5).
It is a simple matterto seethat A has to be nilpotent of nilpotency class ~ 3
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amid has to satisfy (ii) of Theorem 1.1. In Theorem 1.14 we havefor every iso-

morphism class of ~ ~ (k, iii, ~, s) constructed a particularly nice group

F~(n+ 1 , k, in) that actsdiscontinuouslyand quasitransitivelyon affine space

and satisfies ,i1~(F.(n + 1. k, ii,) ~ (k, in, ‘p. s). It is clear from tile results

of this sectionthatTheorem1.14 is valid.

B) 11 satisfies F(II) <D(n, 1)

We conjugate H so that H = D1 (d, 77) or D1(d1 , p. T). The groupof all

translations < E(n, 1) is theunipotent radical of H. By ~2] )~(A)is discrete

in a(n, 1) or IR* x (i, I ). In tile first case A is virtually abelian.In the second

the image of ?~(A) in IR* has to be discreteamid hencecyclic. So in this case

A is virtually abelianby cyclic. This provesTheorem1.10.

In case A is not virtually abeliantakea subgroup A0 < A of finite index

with A(A0) fl (ii, 1) = (1). A0 has A0 fl~9asabeliannormalsubgroup. It

is clear that a generatorof the cyclic group A0/A0 fl ~ actsby a Lorentz

type matrix on the discretegroup A0 fl 9~< .~. This provesTheorem 1.1 5

(i). It is obvious that every group of the type describedin (ii) is a lattice iii a

simply transitivegroup II ~ E(n, I ) with X(II) < D(n, I ).

C) H satisfies X(H) <P(n, I)

In this .case[2] implies that F is virtualiy nilpotent.
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